Search Results for "semi supervised learning algorithm code"

Showing 9 open source projects for "semi supervised learning algorithm code"

View related business solutions
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • The first and only enterprise browser that solves both enterprise security and workforce productivity Icon
    The first and only enterprise browser that solves both enterprise security and workforce productivity

    A browser purpose-built for work: one that simultaneously supercharges enterprise security, workforce productivity and enterprise AI.

    Traditional browsers were never designed for work. They're for internet browsing. Imagine a browser purpose-built for work: one that simultaneously supercharges enterprise security, workforce productivity and enterprise AI.
    Learn More
  • 1
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    We are working on new way for visual programming. We developed a desktop application called MLJAR Studio. It is a notebook-based development environment with interactive code recipes and a managed Python environment. All running locally on your machine. We are waiting for your feedback. The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. It is designed to save time for a data scientist. It abstracts the common way to preprocess the data,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    PyTorch Transfer-Learning-Library

    PyTorch Transfer-Learning-Library

    Transfer Learning Library for Domain Adaptation, Task Adaptation, etc.

    TLlib is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consistent with torchvision. You can easily develop new algorithms or readily apply existing algorithms. We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Hands-on Unsupervised Learning

    Hands-on Unsupervised Learning

    Code for Hands-on Unsupervised Learning Using Python (O'Reilly Media)

    This repo contains the code for the O'Reilly Media, Inc. book "Hands-on Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data" by Ankur A. Patel. Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to the holy grail in AI research, the so-called general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Supervised Reptile

    Supervised Reptile

    Code for the paper "On First-Order Meta-Learning Algorithms"

    The supervised-reptile repository contains code associated with the paper “On First-Order Meta-Learning Algorithms”, which introduces Reptile, a meta-learning algorithm for learning model parameter initializations that adapt quickly to new tasks. The implementation here is aimed at supervised few-shot learning settings (e.g. Omniglot, Mini-ImageNet), not reinforcement learning, and includes scripts to run training and evaluation for few-shot classification. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Managed Cybersecurity Platform Built for MSPs Icon
    Managed Cybersecurity Platform Built for MSPs

    Discover the cyber platform that secures and insures SMEs

    In a world that lives and breathes all things digital, every business is at risk. Cybersecurity has become a major problem for small and growing businesses due to limited budgets, resources, time, and training. Hackers are leveraging these vulnerabilities, and most of the existing cybersecurity solutions on the market are too cumbersome, too complicated, and far too costly.
    Learn More
  • 5
    Machine Learning Octave

    Machine Learning Octave

    MatLab/Octave examples of popular machine learning algorithms

    This repository contains MATLAB / Octave implementations of popular machine learning algorithms, along with explanatory code and mathematical derivations, intended as educational material rather than production code. Implementations of supervised learning algorithms (linear regression, logistic regression, neural nets). The author’s goal is to help users understand how each algorithm works “from scratch,” avoiding black-box library calls. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 6
    DeepCluster

    DeepCluster

    Deep Clustering for Unsupervised Learning of Visual Features

    DeepCluster is a classic self-supervised clustering-based representation learning algorithm that iteratively groups image features and uses the cluster assignments as pseudo-labels to train the network. In each round, features produced by the network are clustered (e.g. k-means), and the cluster IDs become supervision targets in the next epoch, encouraging the model to refine its representation to better separate semantic groups.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Python Machine Learning

    Python Machine Learning

    The "Python Machine Learning (2nd edition)" book code repository

    This repository accompanies the well-known textbook “Python Machine Learning, 2nd Edition” by Sebastian Raschka and Vahid Mirjalili, serving as a complete codebase of examples, notebooks, scripts and supporting materials for the book. It covers a wide range of topics including supervised learning, unsupervised learning, dimensionality reduction, model evaluation, deep learning with TensorFlow, and embedding models into web apps. Each chapter has Jupyter notebooks and Python scripts that...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Machine learning library that performs several clustering algorithms (k-means, incremental k-means, DBSCAN, incremental DBSCAN, mitosis, incremental mitosis, mean shift and SHC) and performs several semi-supervised machine learning approaches (self-learning and co-training). --------------------------------------------------------------------------- To run the library, just double click on the jar file.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Code for Semi-Supervised Machine Learning Techniques, Self-Learning and Co-training used in the paper: Rania Ibrahim, Noha A. Yousri, Mohamed A. Ismail and Nagwa M, El-Makky. “miRNA and Gene Expression based Cancer Classification using Self-Learning and Co-Training Approaches”. IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 495-498, 2013. --------------------------------------------------------------------------- For Self-Learning: java -jar -Xms1700m SelfLearner.jar [trainFile] [testFile] [labelFile] [unlabeledFile] [Alpha] [ClassifierType(randomforest,svm)] [resultFile] [ClassifierModelFile] For Co-Training: java -jar -Xms2500m CoTraining.jar [trainFile-Side1] [testFile-Side1] [labelFile-Side1] [unlabeledFile-Side1] [trainFile-Side2] [testFile-Side2] [labelFile-Side2] [unlabeledFile-Side2] [MappingFile] [Alpha] [ClassifierType(randomforest,svm)] [resultFile] [ClassifierModelFileSide1] [ClassifierModelFileSide2]
    Downloads: 0 This Week
    Last Update:
    See Project
  • Construction Management Software for subcontractors Icon
    Construction Management Software for subcontractors

    PLEXXIS is a subcontractor solution uniting project management, accounting, estimating, takeoff and mobile apps on a single tech stack.

    Plexxis serves subcontractors who seek elite team cohesion and performance. Coupling cloud construction management software, on-premise and hosted solutions, we unite operations, estimating, accounting and field apps on a single technology stack that enables live feedback between bidding, field and finance while in-house services drive continuous adoption.
    Learn More
  • Previous
  • You're on page 1
  • Next