Search Results for "semi supervised learning algorithm code"

Showing 9 open source projects for "semi supervised learning algorithm code"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    We are working on new way for visual programming. We developed a desktop application called MLJAR Studio. It is a notebook-based development environment with interactive code recipes and a managed Python environment. All running locally on your machine. We are waiting for your feedback. The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. It is designed to save time for a data scientist. It abstracts the common way to preprocess the data,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    PyTorch Transfer-Learning-Library

    PyTorch Transfer-Learning-Library

    Transfer Learning Library for Domain Adaptation, Task Adaptation, etc.

    TLlib is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consistent with torchvision. You can easily develop new algorithms or readily apply existing algorithms. We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Hands-on Unsupervised Learning

    Hands-on Unsupervised Learning

    Code for Hands-on Unsupervised Learning Using Python (O'Reilly Media)

    This repo contains the code for the O'Reilly Media, Inc. book "Hands-on Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data" by Ankur A. Patel. Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to the holy grail in AI research, the so-called general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Supervised Reptile

    Supervised Reptile

    Code for the paper "On First-Order Meta-Learning Algorithms"

    The supervised-reptile repository contains code associated with the paper “On First-Order Meta-Learning Algorithms”, which introduces Reptile, a meta-learning algorithm for learning model parameter initializations that adapt quickly to new tasks. The implementation here is aimed at supervised few-shot learning settings (e.g. Omniglot, Mini-ImageNet), not reinforcement learning, and includes scripts to run training and evaluation for few-shot classification. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • AI-powered conversation intelligence software Icon
    AI-powered conversation intelligence software

    Unlock call analytics that provide actionable insights with our call tracking software, empowering you to identify what's working and what's not.

    Every customer interaction is vital to your business success and revenue growth. With Jiminny’s AI-powered conversation intelligence software, we take recording, capturing, and meticulous analysis of call recordings to the next level. Unlock call analytics that provide actionable insights with our call tracking software, empowering you to identify what's working and what's not. Seamlessly support your biggest objectives across the entire business landscape with our innovative call tracking system.
    Learn More
  • 5
    Machine Learning Octave

    Machine Learning Octave

    MatLab/Octave examples of popular machine learning algorithms

    This repository contains MATLAB / Octave implementations of popular machine learning algorithms, along with explanatory code and mathematical derivations, intended as educational material rather than production code. Implementations of supervised learning algorithms (linear regression, logistic regression, neural nets). The author’s goal is to help users understand how each algorithm works “from scratch,” avoiding black-box library calls. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 6
    DeepCluster

    DeepCluster

    Deep Clustering for Unsupervised Learning of Visual Features

    DeepCluster is a classic self-supervised clustering-based representation learning algorithm that iteratively groups image features and uses the cluster assignments as pseudo-labels to train the network. In each round, features produced by the network are clustered (e.g. k-means), and the cluster IDs become supervision targets in the next epoch, encouraging the model to refine its representation to better separate semantic groups.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Python Machine Learning

    Python Machine Learning

    The "Python Machine Learning (2nd edition)" book code repository

    This repository accompanies the well-known textbook “Python Machine Learning, 2nd Edition” by Sebastian Raschka and Vahid Mirjalili, serving as a complete codebase of examples, notebooks, scripts and supporting materials for the book. It covers a wide range of topics including supervised learning, unsupervised learning, dimensionality reduction, model evaluation, deep learning with TensorFlow, and embedding models into web apps. Each chapter has Jupyter notebooks and Python scripts that...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Machine learning library that performs several clustering algorithms (k-means, incremental k-means, DBSCAN, incremental DBSCAN, mitosis, incremental mitosis, mean shift and SHC) and performs several semi-supervised machine learning approaches (self-learning and co-training). --------------------------------------------------------------------------- To run the library, just double click on the jar file.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Code for Semi-Supervised Machine Learning Techniques, Self-Learning and Co-training used in the paper: Rania Ibrahim, Noha A. Yousri, Mohamed A. Ismail and Nagwa M, El-Makky. “miRNA and Gene Expression based Cancer Classification using Self-Learning and Co-Training Approaches”. IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 495-498, 2013. --------------------------------------------------------------------------- For Self-Learning: java -jar -Xms1700m SelfLearner.jar [trainFile] [testFile] [labelFile] [unlabeledFile] [Alpha] [ClassifierType(randomforest,svm)] [resultFile] [ClassifierModelFile] For Co-Training: java -jar -Xms2500m CoTraining.jar [trainFile-Side1] [testFile-Side1] [labelFile-Side1] [unlabeledFile-Side1] [trainFile-Side2] [testFile-Side2] [labelFile-Side2] [unlabeledFile-Side2] [MappingFile] [Alpha] [ClassifierType(randomforest,svm)] [resultFile] [ClassifierModelFileSide1] [ClassifierModelFileSide2]
    Downloads: 0 This Week
    Last Update:
    See Project
  • Skillfully - The future of skills based hiring Icon
    Skillfully - The future of skills based hiring

    Realistic Workplace Simulations that Show Applicant Skills in Action

    Skillfully transforms hiring through AI-powered skill simulations that show you how candidates actually perform before you hire them. Our platform helps companies cut through AI-generated resumes and rehearsed interviews by validating real capabilities in action. Through dynamic job specific simulations and skill-based assessments, companies like Bloomberg and McKinsey have cut screening time by 50% while dramatically improving hire quality.
    Learn More
  • Previous
  • You're on page 1
  • Next