Download Latest Version gampmatlab20210328.zip (11.6 MB)
Email in envelope

Get an email when there's a new version of Generalized Approximate Message Passing

Home
Name Modified Size InfoDownloads / Week
gampmatlab20210328.zip 2021-03-28 11.6 MB
gampmatlab20171011.zip 2017-10-12 11.6 MB
gampmatlab20161005.zip 2016-10-05 11.5 MB
gampmatlab20151222.zip 2015-12-22 11.5 MB
gampmatlab20150901.zip 2015-09-02 11.4 MB
gampmatlab20141030.zip 2014-10-30 11.3 MB
gampmatlab20141018.zip 2014-10-19 11.2 MB
gampmatlab20141001.zip 2014-10-02 11.2 MB
gampmatlab20140521.zip 2014-05-22 11.2 MB
gampmatlab20140130.zip 2014-01-30 11.2 MB
gampmatlab20131031.zip 2013-10-31 11.2 MB
gampmatlab20131019a.zip 2013-10-19 11.2 MB
gampmatlab20131019.zip 2013-10-19 11.2 MB
gampmatlab20131018.zip 2013-10-18 11.2 MB
gampmatlab20131016.zip 2013-10-16 11.2 MB
gampmatlab20130729.zip 2013-07-29 2.6 MB
gampmatlab20130617.zip 2013-06-17 2.6 MB
gampmatlab20130616.zip 2013-06-16 2.6 MB
gampmatlab20130610.zip 2013-06-10 2.4 MB
gampmatlab20130520.zip 2013-05-21 2.4 MB
gampmatlab20121018.zip 2012-10-19 2.1 MB
gampmatlab20120425.zip 2012-05-25 608.0 kB
gampmatlab20120418.zip 2012-04-18 602.8 kB
gampmatlab20120324.zip 2012-03-25 569.1 kB
gampmatlab20120322.zip 2012-03-22 571.6 kB
gampmatlab20111128.zip 2011-11-28 400.2 kB
gampmatlab20111122.zip 2011-11-22 390.3 kB
gampmatlab20111101.zip 2011-11-02 816.7 kB
README.txt 2011-10-27 1.3 kB
Totals: 29 Items   188.5 MB 8
Thank you for downloading Generalized Approximate Message
Passing (GAMP) MATLAB package. If you have any questions or
difficulties, please contact Sundeep Rangan at
srangan@poly.edu.

Installation
------------

1. Downloaded the file gampmatlab.zip from the SourceForge web
page for GAMP, http://gampmatlab.sourceforge.net/.

2. Unzip the file gampmatlab.zip in any directory where you
wish the files to reside.

3. The MATLAB files are in a subdirectory, code/main. Add that
directory to your MATLAB path. You can use the MATLAB addpath
command.

4. Within MATLAB, cd to code/test and run estimTest. This will
run the GAMP algorithm for a Bernoulli-Gaussian sparse vector
and compare the performance against a linear least-squares
estimator.


Right now, you can take a look at the file
code/test/estimTest.m for an example of different estimators.

Reading further
----------------
For more information, consult the User's Guide at:

http://gampmatlab.sourceforge.net/wiki/index.php/Users%27_Guide

The User's Guide has very little right now. There is a
reference to one example, but I am hoping to find more.

Also, due to a server error we are trying to debug, the webpage
may time several minutes to open the first time. So, please be
patient...
Source: README.txt, updated 2011-10-27