Menu

Floating point routine for PIC18f252

2008-11-27
2013-03-12
  • Zenon Bolino

    Zenon Bolino - 2008-11-27

    Hi,

    I am developing a Goertzel algorithm with this PIC and the floating point math "takes for ever" to to the calculation .
    I see the code calls an outside routine     ___fsmul and I was wondering if this routine use the HW multiplier available in the 18f252 or it is just a general math code.
    How can I verify this ?
    Regards,

    Zenon

     
    • William Gebers

      William Gebers - 2008-11-27

      Hi Zenon.

      To ensure that the computation is being done by the hardware multiplier, your best bet would be to write an assembler subroutine yourself that specifically calls the hardware multiplier.  An example of the assembler code should be in the datasheet.

      Regards,

      William

       
    • Zenon Bolino

      Zenon Bolino - 2008-11-28

      William,

      You are right . In the Microchip datasheet for 18f252 there are 2 examples for HW multiplier, but they are for 8 x 8 (signed and unsigned) and also for 16 x 16 (signed and unsigned), but no floating point routine . I am not that good to write a floating point code from there.
      I went to the Michochip web site and found AN 575 , but I could not figure out if those examples use HW multiplier.
      Regards,

      Zenon

       
    • Zenon Bolino

      Zenon Bolino - 2008-11-28

      I found this site http://www.koders.com/c/fid2AF565F87D85A38001342EA97AA3ADAA28105486.aspx?s=__fsmul   that shows the code for floating point multiply routine and it looks is for 8051 CPU and not PIC.
      Can any one comment on this ?

      /* Floating point library in optimized assembly for 8051
      * Copyright (c) 2004, Paul Stoffregen, paul@pjrc.com
      *
      * This program is free software; you can redistribute it and/or
      * modify it under the terms of the GNU Library General Public License
      * as published by the Free Software Foundation; either version 2
      * of the License, or (at your option) any later version.
      *
      * This library is distributed in the hope that it will be useful,
      * but WITHOUT ANY WARRANTY; without even the implied warranty of
      * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      * GNU General Public License for more details.
      *
      * You should have received a copy of the GNU General Public License
      * along with this program; if not, write to the Free Software
      * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
      */

      #define SDCC_FLOAT_LIB
      #include <float.h>

      #ifdef FLOAT_ASM_MCS51

      // float __fsmul (float a, float b) reentrant
      static void dummy(void) _naked
      {
          _asm
          .globl    ___fsmul
      ___fsmul:
          // extract the two inputs, placing them into:
          //      sign     exponent   mantissa
          //      ----     --------   --------
          //  a:  sign_a   exp_a      r4/r3/r2
          //  b:  sign_b   exp_b      r7/r6/r5

          lcall    fsgetargs

          // first check if either input is zero
          cjne    r4, #0, 00002$
      00001$:
          ljmp    fs_return_zero

      00002$:
          mov    a, r7
          jz    00001$

          // compute final sign bit
          jnb    sign_b, 00003$
          cpl    sign_a
      00003$:

          // add the exponents
          mov    a, exp_a
          add    a, exp_b
          add    a, #130
          mov    exp_a, a

          // now we need to multipy r4/r3/r2 * r7/r6/r5
          // ------------------------------------------
          //                            r2 * r5        << 0
          //                r3 * r5  +  r2 * r6        << 8
          //    r4 * r5  +  r3 * r6  +  r2 * r7        << 16
          //    r4 * r6  +  r3 * r7            << 24
          //    r4 * r7                    << 32
          //
          // This adds quite a bit of code, but it is a LOT faster
          // than three calls to __mululong...

          // output goes into r4/r3/r2/r1/r0/xx

          mov    a, r2
          mov    b, r5
          mul    ab            // r2 * r5
          // discard lowest 8 bits
          mov    r0, b
          // range 0-FE

          mov    a, r2
          mov    b, r6
          mul    ab            // r2 * r6
          add    a, r0
          mov    r0, a
          clr    a
          addc    a, b
          mov    r1, a
          // range 0-FEFF

          mov    a, r3
          mov    b, r5
          mul    ab            // r3 * r5
          add    a, r0
          // discard lowest 8 bits
          mov    a, r1
          addc    a, b
          mov    r1, a
          clr    a
          rlc    a
          xch    a, r2
          // range 0-1FD

          mov    b, r7
          mul    ab            // r2 * r7
          add    a, r1
          mov    r1, a
          mov    a, r2
          addc    a, b
          mov    r2, a
          // range 0-FFFE

          mov    a, r3
          mov    r0, a
          mov    b, r6
          mul    ab            // r3 * r6
          add    a, r1
          mov    r1, a
          mov    a, r2
          addc    a, b
          mov    r2, a
          clr    a
          rlc    a
          mov    r3, a
          // range 0-1FDFF

          mov    a, r4
          mov    b, r5
          mul    ab            // r4 * r5
          add    a, r1
          mov    r1, a
          mov    a, r2
          addc    a, b
          mov    r2, a
          clr    a
          addc    a, r3
          mov    r3, a
          // range 0-2FC00

          mov    a, r0 // r3
          mov    b, r7
          mul    ab            // r3 * r7
          add    a, r2
          mov    r2, a
          mov    a, r3
          addc    a, b
          mov    r3, a
          clr    a
          rlc    a
          xch    a, r4
          // range 0-100FD00

          mov    r5, a
          mov    b, r6
          mul    ab            // r4 * r6
          add    a, r2
          mov    r2, a
          mov    a, r3
          addc    a, b
          mov    r3, a
          clr    a
          addc    a, r4
          mov    r4, a
          // range 0-1FEFE00

          mov    a, r5 // r4
          mov    b, r7
          mul    ab            // r4 * r7
          add    a, r3
          mov    r3, a
          mov    a, r4
          addc    a, b
          mov    r4, a
          // range 40000000-FFFFFE00

          jb    acc.7, 00010$
          lcall    fs_normalize_a

      00010$:
          ljmp    fs_round_and_return
          _endasm;
      }

      #else

      /*
      ** libgcc support for software floating point.
      ** Copyright (C) 1991 by Pipeline Associates, Inc.  All rights reserved.
      ** Permission is granted to do *anything* you want with this file,
      ** commercial or otherwise, provided this message remains intact.  So there!
      ** I would appreciate receiving any updates/patches/changes that anyone
      ** makes, and am willing to be the repository for said changes (am I
      ** making a big mistake?).
      **
      ** Pat Wood
      ** Pipeline Associates, Inc.
      ** pipeline!phw@motown.com or
      ** sun!pipeline!phw or
      ** uunet!motown!pipeline!phw
      */

      /* (c)2000/2001: hacked a little by johan.knol@iduna.nl for sdcc */

      union float_long
        {
          float f;
          unsigned long l;
        };

      /* multiply two floats */
      float __fsmul (float a1, float a2) {
        volatile union float_long fl1, fl2;
        volatile unsigned long result;
        volatile int exp;
        char sign;
       
        fl1.f = a1;
        fl2.f = a2;

        if (!fl1.l || !fl2.l)
          return (0);

        /* compute sign and exponent */
        sign = SIGN (fl1.l) ^ SIGN (fl2.l);
        exp = EXP (fl1.l) - EXCESS;
        exp += EXP (fl2.l);

        fl1.l = MANT (fl1.l);
        fl2.l = MANT (fl2.l);

        /* the multiply is done as one 16x16 multiply and two 16x8 multiples */
        result = (fl1.l >> 8) * (fl2.l >> 8);
        result += ((fl1.l & (unsigned long) 0xFF) * (fl2.l >> 8)) >> 8;
        result += ((fl2.l & (unsigned long) 0xFF) * (fl1.l >> 8)) >> 8;

        if (result & SIGNBIT)
          {
            /* round */
            result += 0x80;
            result >>= 8;
          }
        else
          {
            /* round */
            result += 0x40;
            result >>= 7;
            exp--;
          }

        result &= ~HIDDEN;

        /* pack up and go home */
        fl1.l = PACK (sign ? SIGNBIT : 0 , (unsigned long)exp, result); 
        return (fl1.f);
      }

      #endif

       

Log in to post a comment.