Best Reranking Models for Microsoft SharePoint

Compare the Top Reranking Models that integrate with Microsoft SharePoint as of October 2025

This a list of Reranking Models that integrate with Microsoft SharePoint. Use the filters on the left to add additional filters for products that have integrations with Microsoft SharePoint. View the products that work with Microsoft SharePoint in the table below.

What are Reranking Models for Microsoft SharePoint?

Reranking models are AI models in information retrieval systems that refine the order of retrieved documents to better match user queries. Typically employed in two-stage retrieval pipelines, these models first generate a broad set of candidate documents and then reorder them based on relevance. They utilize sophisticated techniques, such as deep learning models like BERT, T5, and their multilingual variants, to capture complex semantic relationships between queries and documents. The primary advantage of reranking models lies in their ability to improve the precision of search results, ensuring that the most pertinent documents are presented to the user. However, this enhanced accuracy often comes at the cost of increased computational resources and potential latency. Despite these challenges, rerankers are integral to applications requiring high-quality information retrieval, such as question answering, semantic search, and recommendation systems. Compare and read user reviews of the best Reranking Models for Microsoft SharePoint currently available using the table below. This list is updated regularly.

  • 1
    Mixedbread

    Mixedbread

    Mixedbread

    Mixedbread is a fully-managed AI search engine that allows users to build production-ready AI search and Retrieval-Augmented Generation (RAG) applications. It offers a complete AI search stack, including vector stores, embedding and reranking models, and document parsing. Users can transform raw data into intelligent search experiences that power AI agents, chatbots, and knowledge systems without the complexity. It integrates with tools like Google Drive, SharePoint, Notion, and Slack. Its vector stores enable users to build production search engines in minutes, supporting over 100 languages. Mixedbread's embedding and reranking models have achieved over 50 million downloads and outperform OpenAI in semantic search and RAG tasks while remaining open-source and cost-effective. The document parser extracts text, tables, and layouts from PDFs, images, and complex documents, providing clean, AI-ready content without manual preprocessing.
  • Previous
  • You're on page 1
  • Next