Compare the Top Query Engines that integrate with Python as of June 2025

This a list of Query Engines that integrate with Python. Use the filters on the left to add additional filters for products that have integrations with Python. View the products that work with Python in the table below.

What are Query Engines for Python?

Query engines are software tools designed to retrieve and process data from databases or large datasets in response to user queries. They efficiently interpret and execute search requests, optimizing the retrieval process to deliver accurate and relevant results quickly. Query engines can handle structured, semi-structured, and unstructured data, making them versatile for various applications such as data analytics, business intelligence, and search engines. They often support complex query languages like SQL and can integrate with multiple data sources to provide comprehensive insights. By optimizing data retrieval, query engines enhance the performance and usability of data-driven applications and decision-making processes. Compare and read user reviews of the best Query Engines for Python currently available using the table below. This list is updated regularly.

  • 1
    Tabular

    Tabular

    Tabular

    Tabular is an open table store from the creators of Apache Iceberg. Connect multiple computing engines and frameworks. Decrease query time and storage costs by up to 50%. Centralize enforcement of data access (RBAC) policies. Connect any query engine or framework, including Athena, BigQuery, Redshift, Snowflake, Databricks, Trino, Spark, and Python. Smart compaction, clustering, and other automated data services reduce storage costs and query times by up to 50%. Unify data access at the database or table. RBAC controls are simple to manage, consistently enforced, and easy to audit. Centralize your security down to the table. Tabular is easy to use plus it features high-powered ingestion, performance, and RBAC under the hood. Tabular gives you the flexibility to work with multiple “best of breed” compute engines based on their strengths. Assign privileges at the data warehouse database, table, or column level.
    Starting Price: $100 per month
  • 2
    PuppyGraph

    PuppyGraph

    PuppyGraph

    PuppyGraph empowers you to seamlessly query one or multiple data stores as a unified graph model. Graph databases are expensive, take months to set up, and need a dedicated team. Traditional graph databases can take hours to run multi-hop queries and struggle beyond 100GB of data. A separate graph database complicates your architecture with brittle ETLs and inflates your total cost of ownership (TCO). Connect to any data source anywhere. Cross-cloud and cross-region graph analytics. No complex ETLs or data replication is required. PuppyGraph enables you to query your data as a graph by directly connecting to your data warehouses and lakes. This eliminates the need to build and maintain time-consuming ETL pipelines needed with a traditional graph database setup. No more waiting for data and failed ETL processes. PuppyGraph eradicates graph scalability issues by separating computation and storage.
    Starting Price: Free
  • 3
    Timeplus

    Timeplus

    Timeplus

    Timeplus is a simple, powerful, and cost-efficient stream processing platform. All in a single binary, easily deployed anywhere. We help data teams process streaming and historical data quickly and intuitively, in organizations of all sizes and industries. Lightweight, single binary, without dependencies. End-to-end analytic streaming and historical functionalities. 1/10 the cost of similar open source frameworks. Turn real-time market and transaction data into real-time insights. Leverage append-only streams and key-value streams to monitor financial data. Implement real-time feature pipelines using Timeplus. One platform for all infrastructure logs, metrics, and traces, the three pillars supporting observability. In Timeplus, we support a wide range of data sources in our web console UI. You can also push data via REST API, or create external streams without copying data into Timeplus.
    Starting Price: $199 per month
  • 4
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 5
    Polars

    Polars

    Polars

    Knowing of data wrangling habits, Polars exposes a complete Python API, including the full set of features to manipulate DataFrames using an expression language that will empower you to create readable and performant code. Polars is written in Rust, uncompromising in its choices to provide a feature-complete DataFrame API to the Rust ecosystem. Use it as a DataFrame library or as a query engine backend for your data models.
  • 6
    Arroyo

    Arroyo

    Arroyo

    Scale from zero to millions of events per second. Arroyo ships as a single, compact binary. Run locally on MacOS or Linux for development, and deploy to production with Docker or Kubernetes. Arroyo is a new kind of stream processing engine, built from the ground up to make real-time easier than batch. Arroyo was designed from the start so that anyone with SQL experience can build reliable, efficient, and correct streaming pipelines. Data scientists and engineers can build end-to-end real-time applications, models, and dashboards, without a separate team of streaming experts. Transform, filter, aggregate, and join data streams by writing SQL, with sub-second results. Your streaming pipelines shouldn't page someone just because Kubernetes decided to reschedule your pods. Arroyo is built to run in modern, elastic cloud environments, from simple container runtimes like Fargate to large, distributed deployments on the Kubernetes logo Kubernetes.
  • Previous
  • You're on page 1
  • Next