Alternatives to StarRocks
Compare StarRocks alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to StarRocks in 2024. Compare features, ratings, user reviews, pricing, and more from StarRocks competitors and alternatives in order to make an informed decision for your business.
-
1
Google Cloud BigQuery
Google
BigQuery is a serverless, multicloud data warehouse that simplifies the process of working with all types of data so you can focus on getting valuable business insights quickly. At the core of Google’s data cloud, BigQuery allows you to simplify data integration, cost effectively and securely scale analytics, share rich data experiences with built-in business intelligence, and train and deploy ML models with a simple SQL interface, helping to make your organization’s operations more data-driven. -
2
StarTree
StarTree
StarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. • Gain critical real-time insights to run your business • Seamlessly integrate data streaming and batch data • High performance in throughput and low-latency at petabyte scale • Fully-managed cloud service • Tiered storage to optimize cloud performance & spend • Fully-secure & enterprise-ready -
3
Amazon Redshift
Amazon
More customers pick Amazon Redshift than any other cloud data warehouse. Redshift powers analytical workloads for Fortune 500 companies, startups, and everything in between. Companies like Lyft have grown with Redshift from startups to multi-billion dollar enterprises. No other data warehouse makes it as easy to gain new insights from all your data. With Redshift you can query petabytes of structured and semi-structured data across your data warehouse, operational database, and your data lake using standard SQL. Redshift lets you easily save the results of your queries back to your S3 data lake using open formats like Apache Parquet to further analyze from other analytics services like Amazon EMR, Amazon Athena, and Amazon SageMaker. Redshift is the world’s fastest cloud data warehouse and gets faster every year. For performance intensive workloads you can use the new RA3 instances to get up to 3x the performance of any cloud data warehouse.Starting Price: $0.25 per hour -
4
SAP HANA Cloud
SAP
SAP HANA Cloud is a fully managed in-memory cloud database as a service (DBaaS). As the cloud-based data foundation for SAP Business Technology Platform, it integrates data from across the enterprise, enabling faster decisions based on live data. Build data solutions with modern architectures and gain business-ready insights in real-time. As the data foundation for SAP Business Technology Platform, the SAP HANA Cloud database offers the power of SAP HANA in the cloud. Scale to your needs, process business data of all types, and perform advanced analytics on live transactions without tuning for fast, improved decision-making. Connect to distributed data with native integration, develop applications and tools across clouds and on-premise, and store volatile data. Tap business-ready information by creating one source of truth and enable security, privacy, and anonymization with enterprise reliability. -
5
Databend
Databend
Databend is a modern, cloud-native data warehouse built to deliver high-performance, cost-efficient analytics for large-scale data processing. It is designed with an elastic architecture that scales dynamically to meet the demands of different workloads, ensuring efficient resource utilization and lower operational costs. Written in Rust, Databend offers exceptional performance through features like vectorized query execution and columnar storage, which optimize data retrieval and processing speeds. Its cloud-first design enables seamless integration with cloud platforms, and it emphasizes reliability, data consistency, and fault tolerance. Databend is an open source solution, making it a flexible and accessible choice for data teams looking to handle big data analytics in the cloud.Starting Price: Free -
6
SelectDB
SelectDB
SelectDB is a modern data warehouse based on Apache Doris, which supports rapid query analysis on large-scale real-time data. From Clickhouse to Apache Doris, to achieve the separation of the lake warehouse and upgrade to the lake warehouse. The fast-hand OLAP system carries nearly 1 billion query requests every day to provide data services for multiple scenes. Due to the problems of storage redundancy, resource seizure, complicated governance, and difficulty in querying and adjustment, the original lake warehouse separation architecture was decided to introduce Apache Doris lake warehouse, combined with Doris's materialized view rewriting ability and automated services, to achieve high-performance data query and flexible data governance. Write real-time data in seconds, and synchronize flow data from databases and data streams. Data storage engine for real-time update, real-time addition, and real-time pre-polymerization.Starting Price: $0.22 per hour -
7
Imply
Imply
Imply is a real-time analytics platform built on Apache Druid, designed to handle large-scale, high-performance OLAP (Online Analytical Processing) workloads. It offers real-time data ingestion, fast query performance, and the ability to perform complex analytical queries on massive datasets with low latency. Imply is tailored for organizations that need interactive analytics, real-time dashboards, and data-driven decision-making at scale. It provides a user-friendly interface for data exploration, along with advanced features such as multi-tenancy, fine-grained access controls, and operational insights. With its distributed architecture and scalability, Imply is well-suited for use cases in streaming data analytics, business intelligence, and real-time monitoring across industries. -
8
VeloDB
VeloDB
Powered by Apache Doris, VeloDB is a modern data warehouse for lightning-fast analytics on real-time data at scale. Push-based micro-batch and pull-based streaming data ingestion within seconds. Storage engine with real-time upsert、append and pre-aggregation. Unparalleled performance in both real-time data serving and interactive ad-hoc queries. Not just structured but also semi-structured data. Not just real-time analytics but also batch processing. Not just run queries against internal data but also work as a federate query engine to access external data lakes and databases. Distributed design to support linear scalability. Whether on-premise deployment or cloud service, separation or integration of storage and compute, resource usage can be flexibly and efficiently adjusted according to workload requirements. Built on and fully compatible with open source Apache Doris. Support MySQL protocol, functions, and SQL for easy integration with other data tools. -
9
Oxla
Oxla
Oxla is a next-generation Online Analytical Processing (OLAP) database engineered for high-speed data processing and efficiency. Its all-in-one architecture enables rapid deployment without external dependencies, allowing users to insert and query data seamlessly. Oxla is compatible with the PostgreSQL wire protocol and SQL dialect, facilitating integration with existing tools and workflows. The platform excels in both real-time processing and handling large, complex queries, making it suitable for diverse analytical tasks. Oxla's design optimizes for modern hardware capabilities, including multi-core architectures, delivering superior performance compared to traditional analytical databases. It offers flexible deployment options, including self-hosted and cloud-based solutions, and provides a free 1-core license granting access to core functionalities. Oxla's pay-as-you-go pricing model ensures cost-effectiveness, allowing users to pay only for the resources they utilize.Starting Price: $0.06 per hour -
10
Apache Druid
Druid
Apache Druid is an open source distributed data store. Druid’s core design combines ideas from data warehouses, timeseries databases, and search systems to create a high performance real-time analytics database for a broad range of use cases. Druid merges key characteristics of each of the 3 systems into its ingestion layer, storage format, querying layer, and core architecture. Druid stores and compresses each column individually, and only needs to read the ones needed for a particular query, which supports fast scans, rankings, and groupBys. Druid creates inverted indexes for string values for fast search and filter. Out-of-the-box connectors for Apache Kafka, HDFS, AWS S3, stream processors, and more. Druid intelligently partitions data based on time and time-based queries are significantly faster than traditional databases. Scale up or down by just adding or removing servers, and Druid automatically rebalances. Fault-tolerant architecture routes around server failures. -
11
ClickHouse
ClickHouse
ClickHouse is a fast open-source OLAP database management system. It is column-oriented and allows to generate analytical reports using SQL queries in real-time. ClickHouse's performance exceeds comparable column-oriented database management systems currently available on the market. It processes hundreds of millions to more than a billion rows and tens of gigabytes of data per single server per second. ClickHouse uses all available hardware to its full potential to process each query as fast as possible. Peak processing performance for a single query stands at more than 2 terabytes per second (after decompression, only used columns). In distributed setup reads are automatically balanced among healthy replicas to avoid increasing latency. ClickHouse supports multi-master asynchronous replication and can be deployed across multiple datacenters. All nodes are equal, which allows avoiding having single points of failure. -
12
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker. -
13
SingleStore
SingleStore
SingleStore (formerly MemSQL) is a distributed, highly-scalable SQL database that can run anywhere. We deliver maximum performance for transactional and analytical workloads with familiar relational models. SingleStore is a scalable SQL database that ingests data continuously to perform operational analytics for the front lines of your business. Ingest millions of events per second with ACID transactions while simultaneously analyzing billions of rows of data in relational SQL, JSON, geospatial, and full-text search formats. SingleStore delivers ultimate data ingestion performance at scale and supports built in batch loading and real time data pipelines. SingleStore lets you achieve ultra fast query response across both live and historical data using familiar ANSI SQL. Perform ad hoc analysis with business intelligence tools, run machine learning algorithms for real-time scoring, perform geoanalytic queries in real time.Starting Price: $0.69 per hour -
14
Rockset
Rockset
Real-Time Analytics on Raw Data. Live ingest from S3, Kafka, DynamoDB & more. Explore raw data as SQL tables. Build amazing data-driven applications & live dashboards in minutes. Rockset is a serverless search and analytics engine that powers real-time apps and live dashboards. Operate directly on raw data, including JSON, XML, CSV, Parquet, XLSX or PDF. Plug data from real-time streams, data lakes, databases, and data warehouses into Rockset. Ingest real-time data without building pipelines. Rockset continuously syncs new data as it lands in your data sources without the need for a fixed schema. Use familiar SQL, including joins, filters, and aggregations. It’s blazing fast, as Rockset automatically indexes all fields in your data. Serve fast queries that power the apps, microservices, live dashboards, and data science notebooks you build. Scale without worrying about servers, shards, or pagers.Starting Price: Free -
15
Apache Pinot
Apache Corporation
Pinot is designed to answer OLAP queries with low latency on immutable data. Pluggable indexing technologies - Sorted Index, Bitmap Index, Inverted Index. Joins are currently not supported, but this problem can be overcome by using Trino or PrestoDB for querying. SQL like language that supports selection, aggregation, filtering, group by, order by, distinct queries on data. Consist of of both offline and real-time table. Use real-time table only to cover segments for which offline data may not be available yet. Detect the right anomalies by customizing anomaly detect flow and notification flow. -
16
Apache Doris
The Apache Software Foundation
Apache Doris is a modern data warehouse for real-time analytics. It delivers lightning-fast analytics on real-time data at scale. Push-based micro-batch and pull-based streaming data ingestion within a second. Storage engine with real-time upsert, append and pre-aggregation. Optimize for high-concurrency and high-throughput queries with columnar storage engine, MPP architecture, cost based query optimizer, vectorized execution engine. Federated querying of data lakes such as Hive, Iceberg and Hudi, and databases such as MySQL and PostgreSQL. Compound data types such as Array, Map and JSON. Variant data type to support auto data type inference of JSON data. NGram bloomfilter and inverted index for text searches. Distributed design for linear scalability. Workload isolation and tiered storage for efficient resource management. Supports shared-nothing clusters as well as separation of storage and compute.Starting Price: Free -
17
Trino
Trino
Trino is a query engine that runs at ludicrous speed. Fast-distributed SQL query engine for big data analytics that helps you explore your data universe. Trino is a highly parallel and distributed query engine, that is built from the ground up for efficient, low-latency analytics. The largest organizations in the world use Trino to query exabyte-scale data lakes and massive data warehouses alike. Supports diverse use cases, ad-hoc analytics at interactive speeds, massive multi-hour batch queries, and high-volume apps that perform sub-second queries. Trino is an ANSI SQL-compliant query engine, that works with BI tools such as R, Tableau, Power BI, Superset, and many others. You can natively query data in Hadoop, S3, Cassandra, MySQL, and many others, without the need for complex, slow, and error-prone processes for copying the data. Access data from multiple systems within a single query.Starting Price: Free -
18
Snowflake
Snowflake
Your cloud data platform. Secure and easy access to any data with infinite scalability. Get all the insights from all your data by all your users, with the instant and near-infinite performance, concurrency and scale your organization requires. Seamlessly share and consume shared data to collaborate across your organization, and beyond, to solve your toughest business problems in real time. Boost the productivity of your data professionals and shorten your time to value in order to deliver modern and integrated data solutions swiftly from anywhere in your organization. Whether you’re moving data into Snowflake or extracting insight out of Snowflake, our technology partners and system integrators will help you deploy Snowflake for your success.Starting Price: $40.00 per month -
19
Timeplus
Timeplus
Timeplus is a simple, powerful, and cost-efficient stream processing platform. All in a single binary, easily deployed anywhere. We help data teams process streaming and historical data quickly and intuitively, in organizations of all sizes and industries. Lightweight, single binary, without dependencies. End-to-end analytic streaming and historical functionalities. 1/10 the cost of similar open source frameworks. Turn real-time market and transaction data into real-time insights. Leverage append-only streams and key-value streams to monitor financial data. Implement real-time feature pipelines using Timeplus. One platform for all infrastructure logs, metrics, and traces, the three pillars supporting observability. In Timeplus, we support a wide range of data sources in our web console UI. You can also push data via REST API, or create external streams without copying data into Timeplus.Starting Price: $199 per month -
20
Presto
Presto Foundation
Presto is an open source distributed SQL query engine for running interactive analytic queries against data sources of all sizes ranging from gigabytes to petabytes. For data engineers who struggle with managing multiple query languages and interfaces to siloed databases and storage, Presto is the fast and reliable engine that provides one simple ANSI SQL interface for all your data analytics and your open lakehouse. Different engines for different workloads means you will have to re-platform down the road. With Presto, you get 1 familar ANSI SQL language and 1 engine for your data analytics so you don't need to graduate to another lakehouse engine. Presto can be used for interactive and batch workloads, small and large amounts of data, and scales from a few to thousands of users. Presto gives you one simple ANSI SQL interface for all of your data in various siloed data systems, helping you join your data ecosystem together. -
21
Kinetica
Kinetica
A scalable cloud database for real-time analysis on large and streaming datasets. Kinetica is designed to harness modern vectorized processors to be orders of magnitude faster and more efficient for real-time spatial and temporal workloads. Track and gain intelligence from billions of moving objects in real-time. Vectorization unlocks new levels of performance for analytics on spatial and time series data at scale. Ingest and query at the same time to act on real-time events. Kinetica's lockless architecture and distributed ingestion ensures data is available to query as soon as it lands. Vectorized processing enables you to do more with less. More power allows for simpler data structures, which lead to lower storage costs, more flexibility and less time engineering your data. Vectorized processing opens the door to amazingly fast analytics and detailed visualization of moving objects at scale. -
22
DuckDB
DuckDB
Processing and storing tabular datasets, e.g. from CSV or Parquet files. Large result set transfer to client. Large client/server installations for centralized enterprise data warehousing. Writing to a single database from multiple concurrent processes. DuckDB is a relational database management system (RDBMS). That means it is a system for managing data stored in relations. A relation is essentially a mathematical term for a table. Each table is a named collection of rows. Each row of a given table has the same set of named columns, and each column is of a specific data type. Tables themselves are stored inside schemas, and a collection of schemas constitutes the entire database that you can access. -
23
Baidu Palo
Baidu AI Cloud
Palo helps enterprises to create the PB-level MPP architecture data warehouse service within several minutes and import the massive data from RDS, BOS, and BMR. Thus, Palo can perform the multi-dimensional analytics of big data. Palo is compatible with mainstream BI tools. Data analysts can analyze and display the data visually and gain insights quickly to assist decision-making. It has the industry-leading MPP query engine, with column storage, intelligent index,and vector execution functions. It can also provide in-library analytics, window functions, and other advanced analytics functions. You can create a materialized view and change the table structure without the suspension of service. It supports flexible and efficient data recovery. -
24
Arroyo
Arroyo
Scale from zero to millions of events per second. Arroyo ships as a single, compact binary. Run locally on MacOS or Linux for development, and deploy to production with Docker or Kubernetes. Arroyo is a new kind of stream processing engine, built from the ground up to make real-time easier than batch. Arroyo was designed from the start so that anyone with SQL experience can build reliable, efficient, and correct streaming pipelines. Data scientists and engineers can build end-to-end real-time applications, models, and dashboards, without a separate team of streaming experts. Transform, filter, aggregate, and join data streams by writing SQL, with sub-second results. Your streaming pipelines shouldn't page someone just because Kubernetes decided to reschedule your pods. Arroyo is built to run in modern, elastic cloud environments, from simple container runtimes like Fargate to large, distributed deployments on the Kubernetes logo Kubernetes. -
25
Tabular
Tabular
Tabular is an open table store from the creators of Apache Iceberg. Connect multiple computing engines and frameworks. Decrease query time and storage costs by up to 50%. Centralize enforcement of data access (RBAC) policies. Connect any query engine or framework, including Athena, BigQuery, Redshift, Snowflake, Databricks, Trino, Spark, and Python. Smart compaction, clustering, and other automated data services reduce storage costs and query times by up to 50%. Unify data access at the database or table. RBAC controls are simple to manage, consistently enforced, and easy to audit. Centralize your security down to the table. Tabular is easy to use plus it features high-powered ingestion, performance, and RBAC under the hood. Tabular gives you the flexibility to work with multiple “best of breed” compute engines based on their strengths. Assign privileges at the data warehouse database, table, or column level.Starting Price: $100 per month -
26
InfluxDB
InfluxData
InfluxDB is a purpose-built data platform designed to handle all time series data, from users, sensors, applications and infrastructure — seamlessly collecting, storing, visualizing, and turning insight into action. With a library of more than 250 open source Telegraf plugins, importing and monitoring data from any system is easy. InfluxDB empowers developers to build transformative IoT, monitoring and analytics services and applications. InfluxDB’s flexible architecture fits any implementation — whether in the cloud, at the edge or on-premises — and its versatility, accessibility and supporting tools (client libraries, APIs, etc.) make it easy for developers at any level to quickly build applications and services with time series data. Optimized for developer efficiency and productivity, the InfluxDB platform gives builders time to focus on the features and functionalities that give their internal projects value and their applications a competitive edge.Starting Price: $0 -
27
Starburst Enterprise
Starburst Data
Starburst helps you make better decisions with fast access to all your data; Without the complexity of data movement and copies. Your company has more data than ever before, but your data teams are stuck waiting to analyze it. Starburst unlocks access to data where it lives, no data movement required, giving your teams fast & accurate access to more data for analysis. Starburst Enterprise is a fully supported, production-tested and enterprise-grade distribution of open source Trino (formerly Presto® SQL). It improves performance and security while making it easy to deploy, connect, and manage your Trino environment. Through connecting to any source of data – whether it’s located on-premise, in the cloud, or across a hybrid cloud environment – Starburst lets your team use the analytics tools they already know & love while accessing data that lives anywhere. -
28
Exasol
Exasol
With an in-memory, columnar database and MPP architecture, you can query billions of rows in seconds. Queries are distributed across all nodes in a cluster, providing linear scalability for more users and advanced analytics. MPP, in-memory, and columnar storage add up to the fastest database built for data analytics. With SaaS, cloud, on premises and hybrid deployment options you can analyze data wherever it lives. Automatic query tuning reduces maintenance and overhead. Seamless integrations and performance efficiency gets you more power at a fraction of normal infrastructure costs. Smart, in-memory query processing allowed this social networking company to boost performance, processing 10B data sets a year. A single data repository and speed engine to accelerate critical analytics, delivering improved patient outcome and bottom line. -
29
Infobright DB
IgniteTech
Infobright DB is a high-performance enterprise database leveraging a columnar storage engine to enable business analysts to dissect data efficiently and more quickly obtain reports. InfoBright DB can be deployed on-premise or in the cloud. Store & analyze big data for interactive business intelligence and complex queries. Improve query performance, reduce storage cost and increase overall efficiency in business analytics and reporting. Easily store up to several hundred TB of data — traditionally not achievable with conventional databases. Run big data applications and eliminate indexing and partitioning — with zero administrative overhead. With the volumes of machine data exploding, IgniteTech’s Infobright DB is specifically designed to achieve high performance for large volumes of machine-generated data. Manage a complex ad hoc analytic environments without the database administration required by other products. -
30
QuestDB
QuestDB
QuestDB is a relational column-oriented database designed for time series and event data. It uses SQL with extensions for time series to assist with real-time analytics. These pages cover core concepts of QuestDB, including setup steps, usage guides, and reference documentation for syntax, APIs and configuration. This section describes the architecture of QuestDB, how it stores and queries data, and introduces features and capabilities unique to the system. Designated timestamp is a core feature that enables time-oriented language capabilities and partitioning. Symbol type makes storing and retrieving repetitive strings efficient. Storage model describes how QuestDB stores records and partitions within tables. Indexes can be used for faster read access on specific columns. Partitions can be used for significant performance benefits on calculations and queries. SQL extensions allow performant time series analysis with a concise syntax. -
31
Hydra
Hydra
Hydra is an open source, column-oriented Postgres. Query billions of rows instantly, no code changes. Hydra parallelizes and vectorizes aggregates (COUNT, SUM, AVG) to deliver the speed you’ve always wanted on Postgres. Boost performance at every size! Set up Hydra in 5 minutes without changing your syntax, tools, data model, or extensions. Use Hydra Cloud for fully managed operations and smooth sailing. Different industries have different needs. Get better analytics with powerful Postgres extensions, custom functions, and take control. Built by you, for you. Hydra is the fastest Postgres in the market for analytics. Boost performance with columnar storage, vectorization, and query parallelization. -
32
Dremio
Dremio
Dremio delivers lightning-fast queries and a self-service semantic layer directly on your data lake storage. No moving data to proprietary data warehouses, no cubes, no aggregation tables or extracts. Just flexibility and control for data architects, and self-service for data consumers. Dremio technologies like Data Reflections, Columnar Cloud Cache (C3) and Predictive Pipelining work alongside Apache Arrow to make queries on your data lake storage very, very fast. An abstraction layer enables IT to apply security and business meaning, while enabling analysts and data scientists to explore data and derive new virtual datasets. Dremio’s semantic layer is an integrated, searchable catalog that indexes all of your metadata, so business users can easily make sense of your data. Virtual datasets and spaces make up the semantic layer, and are all indexed and searchable. -
33
SSuite MonoBase Database
SSuite Office Software
Create relational or flat file databases with unlimited tables, fields, and rows. Includes a custom report builder. Interface with ODBC compatible databases and create custom reports for them. Create your own personal and custom databases. Some Highlights: - Filter tables instantly - Ultra simple graphical-user-interface - One click table and data form creation - Open up to 5 databases simultaneously - Export your data to comma separated files - Create custom reports for all your databases - Full helpfile to assist in creating database reports - Print tables and queries directly from the data grid - Supports any SQL standard that your ODBC compatible database requires Please install and run this database application with full administrator rights for best performance and user experience. Requires: . 1024x768 Display Size . Windows 98 / XP / 7 / 8 / 10 - 32bit and 64bit No Java or DotNet required. Green Energy Software. Saving the planet one bit at a time...Starting Price: Free -
34
Amazon Timestream
Amazon
Amazon Timestream is a fast, scalable, and serverless time series database service for IoT and operational applications that makes it easy to store and analyze trillions of events per day up to 1,000 times faster and at as little as 1/10th the cost of relational databases. Amazon Timestream saves you time and cost in managing the lifecycle of time series data by keeping recent data in memory and moving historical data to a cost optimized storage tier based upon user defined policies. Amazon Timestream’s purpose-built query engine lets you access and analyze recent and historical data together, without needing to specify explicitly in the query whether the data resides in the in-memory or cost-optimized tier. Amazon Timestream has built-in time series analytics functions, helping you identify trends and patterns in your data in near real-time. -
35
QuasarDB
QuasarDB
Quasar's brain is QuasarDB, a high-performance, distributed, column-oriented timeseries database management system designed from the ground up to deliver real-time on petascale use cases. Up to 20X less disk usage. Quasardb ingestion and compression capabilities are unmatched. Up to 10,000X faster feature extraction. QuasarDB can extract features in real-time from the raw data, thanks to the combination of a built-in map/reduce query engine, an aggregation engine that leverages SIMD from modern CPUs, and stochastic indexes that use virtually no disk space. The most cost-effective timeseries solution, thanks to its ultra-efficient resource usage, the capability to leverage object storage (S3), unique compression technology, and fair pricing model. Quasar runs everywhere, from 32-bit ARM devices to high-end Intel servers, from Edge Computing to the cloud or on-premises. -
36
Apache Impala
Apache
Impala provides low latency and high concurrency for BI/analytic queries on the Hadoop ecosystem, including Iceberg, open data formats, and most cloud storage options. Impala also scales linearly, even in multitenant environments. Impala is integrated with native Hadoop security and Kerberos for authentication, and via the Ranger module, you can ensure that the right users and applications are authorized for the right data. Utilize the same file and data formats and metadata, security, and resource management frameworks as your Hadoop deployment, with no redundant infrastructure or data conversion/duplication. For Apache Hive users, Impala utilizes the same metadata and ODBC driver. Like Hive, Impala supports SQL, so you don't have to worry about reinventing the implementation wheel. With Impala, more users, whether using SQL queries or BI applications, can interact with more data through a single repository and metadata stored from source through analysis.Starting Price: Free -
37
DoubleCloud
DoubleCloud
Save time & costs by streamlining data pipelines with zero-maintenance open source solutions. From ingestion to visualization, all are integrated, fully managed, and highly reliable, so your engineers will love working with data. You choose whether to use any of DoubleCloud’s managed open source services or leverage the full power of the platform, including data storage, orchestration, ELT, and real-time visualization. We provide leading open source services like ClickHouse, Kafka, and Airflow, with deployment on Amazon Web Services or Google Cloud. Our no-code ELT tool allows real-time data syncing between systems, fast, serverless, and seamlessly integrated with your existing infrastructure. With our managed open-source data visualization you can simply visualize your data in real time by building charts and dashboards. We’ve designed our platform to make the day-to-day life of engineers more convenient.Starting Price: $0.024 per 1 GB per month -
38
ksqlDB
Confluent
Now that your data is in motion, it’s time to make sense of it. Stream processing enables you to derive instant insights from your data streams, but setting up the infrastructure to support it can be complex. That’s why Confluent developed ksqlDB, the database purpose-built for stream processing applications. Make your data immediately actionable by continuously processing streams of data generated throughout your business. ksqlDB’s intuitive syntax lets you quickly access and augment data in Kafka, enabling development teams to seamlessly create real-time innovative customer experiences and fulfill data-driven operational needs. ksqlDB offers a single solution for collecting streams of data, enriching them, and serving queries on new derived streams and tables. That means less infrastructure to deploy, maintain, scale, and secure. With less moving parts in your data architecture, you can focus on what really matters -- innovation. -
39
Apache Spark
Apache Software Foundation
Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells. Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application. Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources. You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources. -
40
Apache Kylin
Apache Software Foundation
Apache Kylin™ is an open source, distributed Analytical Data Warehouse for Big Data; it was designed to provide OLAP (Online Analytical Processing) capability in the big data era. By renovating the multi-dimensional cube and precalculation technology on Hadoop and Spark, Kylin is able to achieve near constant query speed regardless of the ever-growing data volume. Reducing query latency from minutes to sub-second, Kylin brings online analytics back to big data. Kylin can analyze 10+ billions of rows in less than a second. No more waiting on reports for critical decisions. Kylin connects data on Hadoop to BI tools like Tableau, PowerBI/Excel, MSTR, QlikSense, Hue and SuperSet, making the BI on Hadoop faster than ever. As an Analytical Data Warehouse, Kylin offers ANSI SQL on Hadoop/Spark and supports most ANSI SQL query functions. Kylin can support thousands of interactive queries at the same time, thanks to the low resource consumption of each query. -
41
Azure Synapse Analytics
Microsoft
Azure Synapse is Azure SQL Data Warehouse evolved. Azure Synapse is a limitless analytics service that brings together enterprise data warehousing and Big Data analytics. It gives you the freedom to query data on your terms, using either serverless or provisioned resources—at scale. Azure Synapse brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs. -
42
Greenplum
Greenplum Database
Greenplum Database® is an advanced, fully featured, open source data warehouse. It provides powerful and rapid analytics on petabyte scale data volumes. Uniquely geared toward big data analytics, Greenplum Database is powered by the world’s most advanced cost-based query optimizer delivering high analytical query performance on large data volumes. Greenplum Database® project is released under the Apache 2 license. We want to thank all our current community contributors and are interested in all new potential contributions. For the Greenplum Database community no contribution is too small, we encourage all types of contributions. An open-source massively parallel data platform for analytics, machine learning and AI. Rapidly create and deploy models for complex applications in cybersecurity, predictive maintenance, risk management, fraud detection, and many other areas. Experience the fully featured, integrated, open source analytics platform. -
43
Citus
Citus Data
Citus gives you the Postgres you love, plus the superpower of distributed tables. 100% open source. Now with schema-based and row-based sharding, plus Postgres 16 support. Scale Postgres by distributing data & queries. You can start with a single Citus node, then add nodes & rebalance shards when you need to grow. Speed up queries by 20x to 300x (or more) through parallelism, keeping more data in memory, higher I/O bandwidth, and columnar compression. Citus is an extension (not a fork) to the latest Postgres versions, so you can use your familiar SQL toolset & leverage your Postgres expertise. Reduce your infrastructure headaches by using a single database for both your transactional and analytical workloads. Download and use Citus open source for free. You can manage Citus yourself, embrace open source, and help us improve Citus via GitHub. Focus on your application & forget about your database. Run your app on Citus in the cloud with Azure Cosmos DB for PostgreSQL.Starting Price: $0.27 per hour -
44
AlloyDB
Google
A fully managed PostgreSQL-compatible database service for your most demanding enterprise workloads. AlloyDB combines the best of Google with PostgreSQL, for superior performance, scale, and availability. Fully compatible with PostgreSQL, providing flexibility and true portability for your workloads. Superior performance, 4x faster than standard PostgreSQL for transactional workloads. Fast, real-time insights, up to 100x faster analytical queries than standard PostgreSQL. AlloyDB AI can help you build a wide range of generative AI applications. AlloyDB Omni is a downloadable edition of AlloyDB designed to run anywhere. Scale up and achieve predictable performance and a high availability SLA of 99.99%, inclusive of maintenance, for your most demanding enterprise workloads. Automated and machine learning-enabled autopilot systems simplify management by handling database patching, backups, scaling, and replication for you. -
45
Firebolt
Firebolt Analytics
Firebolt delivers extreme speed and elasticity at any scale solving your impossible data challenges. Firebolt has completely redesigned the cloud data warehouse to deliver a super fast, incredibly efficient analytics experience at any scale. An order-of-magnitude leap in performance means you can analyze much more data at higher granularity with lightning fast queries. Easily scale up or down to support any workload, amount of data and concurrent users. At Firebolt we believe that data warehouses should be much easier to use than what we’re used to. That's why we focus on turning everything that used to be complicated and labor intensive into simple tasks. Cloud data warehouse providers profit from the cloud resources you consume. We don’t! Finally, a pricing model that is fair, transparent, and allows you to scale without breaking the bank. -
46
SAP HANA
SAP
SAP HANA in-memory database is for transactional and analytical workloads with any data type — on a single data copy. It breaks down the transactional and analytical silos in organizations, for quick decision-making, on premise and in the cloud. Innovate without boundaries on a database management system, where you can develop intelligent and live solutions for quick decision-making on a single data copy. And with advanced analytics, you can support next-generation transactional processing. Build data solutions with cloud-native scalability, speed, and performance. With the SAP HANA Cloud database, you can gain trusted, business-ready information from a single solution, while enabling security, privacy, and anonymization with proven enterprise reliability. An intelligent enterprise runs on insight from data – and more than ever, this insight must be delivered in real time. -
47
Oracle Essbase
Oracle
Drive smarter decisions with the ability to easily test and model complex business assumptions in the cloud or on-premises. Oracle Essbase gives organizations the power to rapidly generate insights from multidimensional data sets using what-if analysis, and data visualization tools. Quickly and easily forecast company and departmental performance. Develop and manage analytic applications by using business drivers to model multiple what-if scenarios. Manage workflow for multiple scenarios within a single user interface for centralized submissions and approvals. With sandboxing capabilities, quickly test and evaluate your models to determine the most appropriate model for production. Financial and business analysts can use more than 100 prebuilt, out-of-the-box mathematical functions that can be easily applied to derive new data. -
48
Amazon Athena
Amazon
Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run. Athena is easy to use. Simply point to your data in Amazon S3, define the schema, and start querying using standard SQL. Most results are delivered within seconds. With Athena, there’s no need for complex ETL jobs to prepare your data for analysis. This makes it easy for anyone with SQL skills to quickly analyze large-scale datasets. Athena is out-of-the-box integrated with AWS Glue Data Catalog, allowing you to create a unified metadata repository across various services, crawl data sources to discover schemas and populate your Catalog with new and modified table and partition definitions, and maintain schema versioning. -
49
IBM Db2 Big SQL
IBM
A hybrid SQL-on-Hadoop engine delivering advanced, security-rich data query across enterprise big data sources, including Hadoop, object storage and data warehouses. IBM Db2 Big SQL is an enterprise-grade, hybrid ANSI-compliant SQL-on-Hadoop engine, delivering massively parallel processing (MPP) and advanced data query. Db2 Big SQL offers a single database connection or query for disparate sources such as Hadoop HDFS and WebHDFS, RDMS, NoSQL databases, and object stores. Benefit from low latency, high performance, data security, SQL compatibility, and federation capabilities to do ad hoc and complex queries. Db2 Big SQL is now available in 2 variations. It can be integrated with Cloudera Data Platform, or accessed as a cloud-native service on the IBM Cloud Pak® for Data platform. Access and analyze data and perform queries on batch and real-time data across sources, like Hadoop, object stores and data warehouses. -
50
PuppyGraph
PuppyGraph
PuppyGraph empowers you to seamlessly query one or multiple data stores as a unified graph model. Graph databases are expensive, take months to set up, and need a dedicated team. Traditional graph databases can take hours to run multi-hop queries and struggle beyond 100GB of data. A separate graph database complicates your architecture with brittle ETLs and inflates your total cost of ownership (TCO). Connect to any data source anywhere. Cross-cloud and cross-region graph analytics. No complex ETLs or data replication is required. PuppyGraph enables you to query your data as a graph by directly connecting to your data warehouses and lakes. This eliminates the need to build and maintain time-consuming ETL pipelines needed with a traditional graph database setup. No more waiting for data and failed ETL processes. PuppyGraph eradicates graph scalability issues by separating computation and storage.Starting Price: Free