Alternatives to Qwen2-VL
Compare Qwen2-VL alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Qwen2-VL in 2024. Compare features, ratings, user reviews, pricing, and more from Qwen2-VL competitors and alternatives in order to make an informed decision for your business.
-
1
Ango Hub
Ango AI
Ango Hub is the quality-centric, versatile all-in-one data annotation platform for AI teams. Available both on the cloud and on-premise, Ango Hub allows AI teams and their data annotation workforce to annotate their data quickly and efficiently, without compromising on quality. Ango Hub is the first and only data annotation platform focused on quality. It has features enhancing the quality of your team's annotations such as centralized labeling instructions, a real-time issue system, review workflows, sample label libraries, consensus up to 30 annotators on the same asset, and more. Ango Hub is also versatile. It supports all of the data types your team might need: image, audio, text, video, and native PDF. It has close to twenty different labeling tools you can use to annotate your data, among them some which are unique to Ango Hub such as rotated bounding boxes, unlimited conditional nested questions, label relations, and table-based labeling for more complex labeling tasks. -
2
Azure Computer Vision
Microsoft
Boost content discoverability, automate text extraction, analyze video in real time, and create products that more people can use by embedding vision capabilities in your apps. Use visual data processing to label content with objects and concepts, extract text, generate image descriptions, moderate content, and understand people’s movement in physical spaces. No machine learning expertise is required. -
3
Qwen
Alibaba
Qwen LLM refers to a family of large language models (LLMs) developed by Alibaba Cloud's Damo Academy. These models are trained on a massive dataset of text and code, allowing them to understand and generate human-like text, translate languages, write different kinds of creative content, and answer your questions in an informative way. Here are some key features of Qwen LLMs: Variety of sizes: The Qwen series ranges from 1.8 billion to 72 billion parameters, offering options for different needs and performance levels. Open source: Some versions of Qwen are open-source, which means their code is publicly available for anyone to use and modify. Multilingual support: Qwen can understand and translate multiple languages, including English, Chinese, and French. Diverse capabilities: Besides generation and translation, Qwen models can be used for tasks like question answering, text summarization, and code generation.Starting Price: Free -
4
Qwen2
Alibaba
Qwen2 is the large language model series developed by Qwen team, Alibaba Cloud. Qwen2 is a series of large language models developed by the Qwen team at Alibaba Cloud. It includes both base language models and instruction-tuned models, ranging from 0.5 billion to 72 billion parameters, and features both dense models and a Mixture-of-Experts model. The Qwen2 series is designed to surpass most previous open-weight models, including its predecessor Qwen1.5, and to compete with proprietary models across a broad spectrum of benchmarks in language understanding, generation, multilingual capabilities, coding, mathematics, and reasoning.Starting Price: Free -
5
CodeQwen
QwenLM
CodeQwen is the code version of Qwen, the large language model series developed by the Qwen team, Alibaba Cloud. It is a transformer-based decoder-only language model pre-trained on a large amount of data of codes. Strong code generation capabilities and competitive performance across a series of benchmarks. Supporting long context understanding and generation with the context length of 64K tokens. CodeQwen supports 92 coding languages and provides excellent performance in text-to-SQL, bug fixes, etc. You can just write several lines of code with transformers to chat with CodeQwen. Essentially, we build the tokenizer and the model from pre-trained methods, and we use the generate method to perform chatting with the help of the chat template provided by the tokenizer. We apply the ChatML template for chat models following our previous practice. The model completes the code snippets according to the given prompts, without any additional formatting.Starting Price: Free -
6
Qwen-7B
Alibaba
Qwen-7B is the 7B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-7B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc. Additionally, based on the pretrained Qwen-7B, we release Qwen-7B-Chat, a large-model-based AI assistant, which is trained with alignment techniques. The features of the Qwen-7B series include: Trained with high-quality pretraining data. We have pretrained Qwen-7B on a self-constructed large-scale high-quality dataset of over 2.2 trillion tokens. The dataset includes plain texts and codes, and it covers a wide range of domains, including general domain data and professional domain data. Strong performance. In comparison with the models of the similar model size, we outperform the competitors on a series of benchmark datasets, which evaluates natural language understanding, mathematics, coding, etc. And more.Starting Price: Free -
7
Smaug-72B
Abacus
Smaug-72B is a powerful open-source large language model (LLM) known for several key features: High Performance: It currently holds the top spot on the Hugging Face Open LLM leaderboard, surpassing models like GPT-3.5 in various benchmarks. This means it excels at tasks like understanding, responding to, and generating human-like text. Open Source: Unlike many other advanced LLMs, Smaug-72B is freely available for anyone to use and modify, fostering collaboration and innovation in the AI community. Focus on Reasoning and Math: It specifically shines in handling reasoning and mathematical tasks, attributing this strength to unique fine-tuning techniques developed by Abacus AI, the creators of Smaug-72B. Based on Qwen-72B: It's technically a fine-tuned version of another powerful LLM called Qwen-72B, released by Alibaba, further improving upon its capabilities. Overall, Smaug-72B represents a significant step forward in open-source AI.Starting Price: Free -
8
GPT-4V (Vision)
OpenAI
GPT-4 with vision (GPT-4V) enables users to instruct GPT-4 to analyze image inputs provided by the user, and is the latest capability we are making broadly available. Incorporating additional modalities (such as image inputs) into large language models (LLMs) is viewed by some as a key frontier in artificial intelligence research and development. Multimodal LLMs offer the possibility of expanding the impact of language-only systems with novel interfaces and capabilities, enabling them to solve new tasks and provide novel experiences for their users. In this system card, we analyze the safety properties of GPT-4V. Our work on safety for GPT-4V builds on the work done for GPT-4 and here we dive deeper into the evaluations, preparation, and mitigation work done specifically for image inputs. -
9
GPT-4o
OpenAI
GPT-4o (“o” for “omni”) is a step towards much more natural human-computer interaction—it accepts as input any combination of text, audio, image, and video and generates any combination of text, audio, and image outputs. It can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time (opens in a new window) in a conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models.Starting Price: $5.00 / 1M tokens -
10
InstructGPT
OpenAI
InstructGPT is an open-source framework for training language models to generate natural language instructions from visual input. It uses a generative pre-trained transformer (GPT) model and the state-of-the-art object detector, Mask R-CNN, to detect objects in images and generate natural language sentences that describe the image. InstructGPT is designed to be effective across domains such as robotics, gaming and education; it can assist robots in navigating complex tasks with natural language instructions, or help students learn by providing descriptive explanations of processes or events.Starting Price: $0.0200 per 1000 tokens -
11
ChatGLM
Zhipu AI
ChatGLM-6B is an open-source, Chinese-English bilingual dialogue language model based on the General Language Model (GLM) architecture with 6.2 billion parameters. Combined with model quantization technology, users can deploy locally on consumer-grade graphics cards (only 6GB of video memory is required at the INT4 quantization level). ChatGLM-6B uses technology similar to ChatGPT, optimized for Chinese Q&A and dialogue. After about 1T identifiers of Chinese and English bilingual training, supplemented by supervision and fine-tuning, feedback self-help, human feedback reinforcement learning and other technologies, ChatGLM-6B with 6.2 billion parameters has been able to generate answers that are quite in line with human preferences.Starting Price: Free -
12
Baichuan-13B
Baichuan Intelligent Technology
Baichuan-13B is an open source and commercially available large-scale language model containing 13 billion parameters developed by Baichuan Intelligent following Baichuan -7B . It has achieved the best results of the same size on authoritative Chinese and English benchmarks. This release contains two versions of pre-training ( Baichuan-13B-Base ) and alignment ( Baichuan-13B-Chat ). Larger size, more data : Baichuan-13B further expands the number of parameters to 13 billion on the basis of Baichuan -7B , and trains 1.4 trillion tokens on high-quality corpus, which is 40% more than LLaMA-13B. It is currently open source The model with the largest amount of training data in the 13B size. Support Chinese and English bilingual, use ALiBi position code, context window length is 4096.Starting Price: Free -
13
Samsung Gauss
Samsung
Samsung Gauss is a new AI model developed by Samsung Electronics. It is a large language model (LLM) that has been trained on a massive dataset of text and code. Samsung Gauss is able to generate text, translate languages, write different kinds of creative content, and answer your questions in an informative way. Samsung Gauss is still under development, but it has already learned to perform many kinds of tasks, including: Following instructions and completing requests thoughtfully. Answering your questions in a comprehensive and informative way, even if they are open ended, challenging, or strange. Generating different creative text formats, like poems, code, scripts, musical pieces, email, letters, etc. Here are some examples of what Samsung Gauss can do: Translation: Samsung Gauss can translate text between many different languages, including English, French, German, Spanish, Chinese, Japanese, and Korean. Coding: Samsung Gauss can generate code. -
14
mT5
Google
Multilingual T5 (mT5) is a massively multilingual pretrained text-to-text transformer model, trained following a similar recipe as T5. This repo can be used to reproduce the experiments in the mT5 paper. mT5 is pretrained on the mC4 corpus, covering 101 languages: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, and more.Starting Price: Free -
15
GPT-4o mini
OpenAI
A small model with superior textual intelligence and multimodal reasoning. GPT-4o mini enables a broad range of tasks with its low cost and latency, such as applications that chain or parallelize multiple model calls (e.g., calling multiple APIs), pass a large volume of context to the model (e.g., full code base or conversation history), or interact with customers through fast, real-time text responses (e.g., customer support chatbots). Today, GPT-4o mini supports text and vision in the API, with support for text, image, video and audio inputs and outputs coming in the future. The model has a context window of 128K tokens, supports up to 16K output tokens per request, and has knowledge up to October 2023. Thanks to the improved tokenizer shared with GPT-4o, handling non-English text is now even more cost effective. -
16
Clarifai
Clarifai
Clarifai is a leading AI platform for modeling image, video, text and audio data at scale. Our platform combines computer vision, natural language processing and audio recognition as building blocks for developing better, faster and stronger AI. We help our customers create innovative solutions for visual search, content moderation, aerial surveillance, visual inspection, intelligent document analysis, and more. The platform comes with the broadest repository of pre-trained, out-of-the-box AI models built with millions of inputs and context. Our models give you a head start; extending your own custom AI models. Clarifai Community builds upon this and offers 1000s of pre-trained models and workflows from Clarifai and other leading AI builders. Users can build and share models with other community members. Founded in 2013 by Matt Zeiler, Ph.D., Clarifai has been recognized by leading analysts, IDC, Forrester and Gartner, as a leading computer vision AI platform. Visit clarifai.comStarting Price: $0 -
17
VideoPoet
Google
VideoPoet is a simple modeling method that can convert any autoregressive language model or large language model (LLM) into a high-quality video generator. It contains a few simple components. An autoregressive language model learns across video, image, audio, and text modalities to autoregressively predict the next video or audio token in the sequence. A mixture of multimodal generative learning objectives are introduced into the LLM training framework, including text-to-video, text-to-image, image-to-video, video frame continuation, video inpainting and outpainting, video stylization, and video-to-audio. Furthermore, such tasks can be composed together for additional zero-shot capabilities. This simple recipe shows that language models can synthesize and edit videos with a high degree of temporal consistency. -
18
DeepSeek LLM
DeepSeek
Introducing DeepSeek LLM, an advanced language model comprising 67 billion parameters. It has been trained from scratch on a vast dataset of 2 trillion tokens in both English and Chinese. In order to foster research, we have made DeepSeek LLM 7B/67B Base and DeepSeek LLM 7B/67B Chat open source for the research community. -
19
GPT-3.5
OpenAI
GPT-3.5 is the next evolution of GPT 3 large language model from OpenAI. GPT-3.5 models can understand and generate natural language. We offer four main models with different levels of power suitable for different tasks. The main GPT-3.5 models are meant to be used with the text completion endpoint. We also offer models that are specifically meant to be used with other endpoints. Davinci is the most capable model family and can perform any task the other models can perform and often with less instruction. For applications requiring a lot of understanding of the content, like summarization for a specific audience and creative content generation, Davinci is going to produce the best results. These increased capabilities require more compute resources, so Davinci costs more per API call and is not as fast as the other models.Starting Price: $0.0200 per 1000 tokens -
20
Code Llama
Meta
Code Llama is a large language model (LLM) that can use text prompts to generate code. Code Llama is state-of-the-art for publicly available LLMs on code tasks, and has the potential to make workflows faster and more efficient for current developers and lower the barrier to entry for people who are learning to code. Code Llama has the potential to be used as a productivity and educational tool to help programmers write more robust, well-documented software. Code Llama is a state-of-the-art LLM capable of generating code, and natural language about code, from both code and natural language prompts. Code Llama is free for research and commercial use. Code Llama is built on top of Llama 2 and is available in three models: Code Llama, the foundational code model; Codel Llama - Python specialized for Python; and Code Llama - Instruct, which is fine-tuned for understanding natural language instructions.Starting Price: Free -
21
GPT-3
OpenAI
Our GPT-3 models can understand and generate natural language. We offer four main models with different levels of power suitable for different tasks. Davinci is the most capable model, and Ada is the fastest. The main GPT-3 models are meant to be used with the text completion endpoint. We also offer models that are specifically meant to be used with other endpoints. Davinci is the most capable model family and can perform any task the other models can perform and often with less instruction. For applications requiring a lot of understanding of the content, like summarization for a specific audience and creative content generation, Davinci is going to produce the best results. These increased capabilities require more compute resources, so Davinci costs more per API call and is not as fast as the other models.Starting Price: $0.0200 per 1000 tokens -
22
Cohere
Cohere AI
Build natural language understanding and generation into your product with a few lines of code. The Cohere API provides access to models that read billions of web pages and learn to understand the meaning, sentiment, and intent of the words we use. Use the Cohere API to write human-like text by completing a prompt or filling in blanks. You can write copy, generate code, summarize text, and more. Compute the likelihood of text and retrieve representations from the model. Use the likelihood API to filter text based on chosen categories or selected criteria. With representations, you can train your own downstream models on a wide variety of domain-specific natural language tasks. The Cohere API can compute the similarity between pieces of text, and make categorical predictions by comparing the likelihood of different text options. The model has multiple lenses through which to view ideas, so that it can recognize abstract similarities between concepts as distinct as DNA and computers.Starting Price: $0.40 / 1M Tokens -
23
CodeGemma
Google
CodeGemma is a collection of powerful, lightweight models that can perform a variety of coding tasks like fill-in-the-middle code completion, code generation, natural language understanding, mathematical reasoning, and instruction following. CodeGemma has 3 model variants, a 7B pre-trained variant that specializes in code completion and generation from code prefixes and/or suffixes, a 7B instruction-tuned variant for natural language-to-code chat and instruction following; and a state-of-the-art 2B pre-trained variant that provides up to 2x faster code completion. Complete lines, and functions, and even generate entire blocks of code, whether you're working locally or using Google Cloud resources. Trained on 500 billion tokens of primarily English language data from web documents, mathematics, and code, CodeGemma models generate code that's not only more syntactically correct but also semantically meaningful, reducing errors and debugging time. -
24
Llama 3.2
Meta
The open-source AI model you can fine-tune, distill and deploy anywhere is now available in more versions. Choose from 1B, 3B, 11B or 90B, or continue building with Llama 3.1 Llama 3.2 is a collection of large language models (LLMs) pretrained and fine-tuned in 1B and 3B sizes that are multilingual text only, and 11B and 90B sizes that take both text and image inputs and output text. Develop highly performative and efficient applications from our latest release. Use our 1B or 3B models for on device applications such as summarizing a discussion from your phone or calling on-device tools like calendar. Use our 11B or 90B models for image use cases such as transforming an existing image into something new or getting more information from an image of your surroundings.Starting Price: Free -
25
Phi-2
Microsoft
We are now releasing Phi-2, a 2.7 billion-parameter language model that demonstrates outstanding reasoning and language understanding capabilities, showcasing state-of-the-art performance among base language models with less than 13 billion parameters. On complex benchmarks Phi-2 matches or outperforms models up to 25x larger, thanks to new innovations in model scaling and training data curation. With its compact size, Phi-2 is an ideal playground for researchers, including for exploration around mechanistic interpretability, safety improvements, or fine-tuning experimentation on a variety of tasks. We have made Phi-2 available in the Azure AI Studio model catalog to foster research and development on language models. -
26
Gopher
DeepMind
Language, and its role in demonstrating and facilitating comprehension - or intelligence - is a fundamental part of being human. It gives people the ability to communicate thoughts and concepts, express ideas, create memories, and build mutual understanding. These are foundational parts of social intelligence. It’s why our teams at DeepMind study aspects of language processing and communication, both in artificial agents and in humans. As part of a broader portfolio of AI research, we believe the development and study of more powerful language models – systems that predict and generate text – have tremendous potential for building advanced AI systems that can be used safely and efficiently to summarise information, provide expert advice and follow instructions via natural language. Developing beneficial language models requires research into their potential impacts, including the risks they pose. -
27
Codestral
Mistral AI
We introduce Codestral, our first-ever code model. Codestral is an open-weight generative AI model explicitly designed for code generation tasks. It helps developers write and interact with code through a shared instruction and completion API endpoint. As it masters code and English, it can be used to design advanced AI applications for software developers. Codestral is trained on a diverse dataset of 80+ programming languages, including the most popular ones, such as Python, Java, C, C++, JavaScript, and Bash. It also performs well on more specific ones like Swift and Fortran. This broad language base ensures Codestral can assist developers in various coding environments and projects.Starting Price: Free -
28
Reka
Reka
Our enterprise-grade multimodal assistant carefully designed with privacy, security, and efficiency in mind. We train Yasa to read text, images, videos, and tabular data, with more modalities to come. Use it to generate ideas for creative tasks, get answers to basic questions, or derive insights from your internal data. Generate, train, compress, or deploy on-premise with a few simple commands. Use our proprietary algorithms to personalize our model to your data and use cases. We design proprietary algorithms involving retrieval, fine-tuning, self-supervised instruction tuning, and reinforcement learning to tune our model on your datasets. -
29
LFM-3B
Liquid AI
LFM-3B delivers incredible performance for its size. It positions itself as first place among 3B parameter transformers, hybrids, and RNN models, but also outperforms the previous generation of 7B and 13B models. It is also on par with Phi-3.5-mini on multiple benchmarks, while being 18.4% smaller. LFM-3B is the ideal choice for mobile and other edge text-based applications. -
30
Gemini 1.5 Pro
Google
The Gemini 1.5 Pro LLM from Google is a powerful large language model designed to push the boundaries of natural language understanding and generation. Part of Google DeepMind’s Gemini series, this model integrates advanced machine learning techniques to offer exceptional performance in tasks such as text completion, summarization, sentiment analysis, translation, and conversational AI. Built with scalability in mind, the Gemini 1.5 Pro LLM is optimized for both efficiency and accuracy, capable of handling real-time applications in diverse environments, from customer support systems to content creation platforms. Gemini 1.5 Pro introduces a breakthrough context window of up to two million tokens — the longest context window of any large scale foundation model yet. It achieves near-perfect recall on long-context retrieval tasks across modalities, unlocking the ability to accurately process large-scale documents, thousands of lines of code, hours of audio, video, and more. -
31
Eyewey
Eyewey
Train your own models, get access to pre-trained computer vision models and app templates, learn how to create AI apps or solve a business problem using computer vision in a couple of hours. Start creating your own dataset for detection by adding the images of the object you need to train. You can add up to 5000 images per dataset. After images are added to your dataset, they are pushed automatically into training. Once the model is finished training, you will be notified accordingly. You can simply download your model to be used for detection. You can also integrate your model to our pre-existing app templates for quick coding. Our mobile app which is available on both Android and IOS utilizes the power of computer vision to help people with complete blindness in their day-to-day lives. It is capable of alerting hazardous objects or signs, detecting common objects, recognizing text as well as currencies and understanding basic scenarios through deep learning.Starting Price: $6.67 per month -
32
XLNet
XLNet
XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective. Additionally, XLNet employs Transformer-XL as the backbone model, exhibiting excellent performance for language tasks involving long context. Overall, XLNet achieves state-of-the-art (SOTA) results on various downstream language tasks including question answering, natural language inference, sentiment analysis, and document ranking.Starting Price: Free -
33
Codestral Mamba
Mistral AI
As a tribute to Cleopatra, whose glorious destiny ended in tragic snake circumstances, we are proud to release Codestral Mamba, a Mamba2 language model specialized in code generation, available under an Apache 2.0 license. Codestral Mamba is another step in our effort to study and provide new architectures. It is available for free use, modification, and distribution, and we hope it will open new perspectives in architecture research. Mamba models offer the advantage of linear time inference and the theoretical ability to model sequences of infinite length. It allows users to engage with the model extensively with quick responses, irrespective of the input length. This efficiency is especially relevant for code productivity use cases, this is why we trained this model with advanced code and reasoning capabilities, enabling it to perform on par with SOTA transformer-based models. -
34
Hippocratic AI
Hippocratic AI
Hippocratic AI is the new state of the art (SOTA) model, outperforming GPT-4 on 105 of 114 healthcare exams and certifications. Hippocratic AI has outperformed GPT-4 on 105 out of 114 tests and certifications, outperformed by a margin of five percent or more on 74 of the certifications, and outperformed by a margin of ten percent or more on 43 of the certifications. Most language models pre-train on the common crawl of the Internet, which may include incorrect and misleading information. Unlike these LLMs, Hippocratic AI is investing heavily in legally acquiring evidence-based healthcare content. We’re conducting a unique Reinforcement Learning with Human Feedback process using healthcare professionals to train and validate the model’s readiness for deployment. We call this RLHF-HP. Hippocratic AI will not release the model until a large number of these licensed professionals deem it safe. -
35
PanGu-Σ
Huawei
Significant advancements in the field of natural language processing, understanding, and generation have been achieved through the expansion of large language models. This study introduces a system which utilizes Ascend 910 AI processors and the MindSpore framework to train a language model with over a trillion parameters, specifically 1.085T, named PanGu-{\Sigma}. This model, which builds upon the foundation laid by PanGu-{\alpha}, takes the traditionally dense Transformer model and transforms it into a sparse one using a concept known as Random Routed Experts (RRE). The model was efficiently trained on a dataset of 329 billion tokens using a technique called Expert Computation and Storage Separation (ECSS), leading to a 6.3-fold increase in training throughput via heterogeneous computing. Experimentation indicates that PanGu-{\Sigma} sets a new standard in zero-shot learning for various downstream Chinese NLP tasks. -
36
BLOOM
BigScience
BLOOM is an autoregressive Large Language Model (LLM), trained to continue text from a prompt on vast amounts of text data using industrial-scale computational resources. As such, it is able to output coherent text in 46 languages and 13 programming languages that is hardly distinguishable from text written by humans. BLOOM can also be instructed to perform text tasks it hasn't been explicitly trained for, by casting them as text generation tasks. -
37
Aya
Cohere AI
Aya is a new state-of-the-art, open-source, massively multilingual, generative large language research model (LLM) covering 101 different languages — more than double the number of languages covered by existing open-source models. Aya helps researchers unlock the powerful potential of LLMs for dozens of languages and cultures largely ignored by most advanced models on the market today. We are open-sourcing both the Aya model, as well as the largest multilingual instruction fine-tuned dataset to-date with a size of 513 million covering 114 languages. This data collection includes rare annotations from native and fluent speakers all around the world, ensuring that AI technology can effectively serve a broad global audience that have had limited access to-date. -
38
Alpaca
Stanford Center for Research on Foundation Models (CRFM)
Instruction-following models such as GPT-3.5 (text-DaVinci-003), ChatGPT, Claude, and Bing Chat have become increasingly powerful. Many users now interact with these models regularly and even use them for work. However, despite their widespread deployment, instruction-following models still have many deficiencies: they can generate false information, propagate social stereotypes, and produce toxic language. To make maximum progress on addressing these pressing problems, it is important for the academic community to engage. Unfortunately, doing research on instruction-following models in academia has been difficult, as there is no easily accessible model that comes close in capabilities to closed-source models such as OpenAI’s text-DaVinci-003. We are releasing our findings about an instruction-following language model, dubbed Alpaca, which is fine-tuned from Meta’s LLaMA 7B model. -
39
Megatron-Turing
NVIDIA
Megatron-Turing Natural Language Generation model (MT-NLG), is the largest and the most powerful monolithic transformer English language model with 530 billion parameters. This 105-layer, transformer-based MT-NLG improves upon the prior state-of-the-art models in zero-, one-, and few-shot settings. It demonstrates unmatched accuracy in a broad set of natural language tasks such as, Completion prediction, Reading comprehension, Commonsense reasoning, Natural language inferences, Word sense disambiguation, etc. With the intent of accelerating research on the largest English language model till date and enabling customers to experiment, employ and apply such a large language model on downstream language tasks - NVIDIA is pleased to announce an Early Access program for its managed API service to MT-NLG mode. -
40
ESMFold
Meta
ESMFold shows how AI can give us new tools to understand the natural world, much like the microscope, which enabled us to see into the world at an infinitesimal scale and opened up a whole new understanding of life. AI can help us understand the immense scope of natural diversity, and see biology in a new way. Much of AI research has focused on helping computers understand the world in a way similar to how humans do. The language of proteins is one that is beyond human comprehension and has eluded even the most powerful computational tools. AI has the potential to open up this language to our understanding. Studying AI in new domains such as biology can also give insight into artificial intelligence more broadly. Our work reveals connections across domains: large language models that are behind advances in machine translation, natural language understanding, speech recognition, and image generation are also able to learn deep information about biology.Starting Price: Free -
41
ALBERT
Google
ALBERT is a self-supervised Transformer model that was pretrained on a large corpus of English data. This means it does not require manual labelling, and instead uses an automated process to generate inputs and labels from raw texts. It is trained with two distinct objectives in mind. The first is Masked Language Modeling (MLM), which randomly masks 15% of words in the input sentence and requires the model to predict them. This technique differs from RNNs and autoregressive models like GPT as it allows the model to learn bidirectional sentence representations. The second objective is Sentence Ordering Prediction (SOP), which entails predicting the ordering of two consecutive segments of text during pretraining. -
42
Claude 3 Opus
Anthropic
Opus, our most intelligent model, outperforms its peers on most of the common evaluation benchmarks for AI systems, including undergraduate level expert knowledge (MMLU), graduate level expert reasoning (GPQA), basic mathematics (GSM8K), and more. It exhibits near-human levels of comprehension and fluency on complex tasks, leading the frontier of general intelligence. All Claude 3 models show increased capabilities in analysis and forecasting, nuanced content creation, code generation, and conversing in non-English languages like Spanish, Japanese, and French.Starting Price: Free -
43
PaLM 2
Google
PaLM 2 is our next generation large language model that builds on Google’s legacy of breakthrough research in machine learning and responsible AI. It excels at advanced reasoning tasks, including code and math, classification and question answering, translation and multilingual proficiency, and natural language generation better than our previous state-of-the-art LLMs, including PaLM. It can accomplish these tasks because of the way it was built – bringing together compute-optimal scaling, an improved dataset mixture, and model architecture improvements. PaLM 2 is grounded in Google’s approach to building and deploying AI responsibly. It was evaluated rigorously for its potential harms and biases, capabilities and downstream uses in research and in-product applications. It’s being used in other state-of-the-art models, like Med-PaLM 2 and Sec-PaLM, and is powering generative AI features and tools at Google, like Bard and the PaLM API. -
44
PanGu-α
Huawei
PanGu-α is developed under the MindSpore and trained on a cluster of 2048 Ascend 910 AI processors. The training parallelism strategy is implemented based on MindSpore Auto-parallel, which composes five parallelism dimensions to scale the training task to 2048 processors efficiently, including data parallelism, op-level model parallelism, pipeline model parallelism, optimizer model parallelism and rematerialization. To enhance the generalization ability of PanGu-α, we collect 1.1TB high-quality Chinese data from a wide range of domains to pretrain the model. We empirically test the generation ability of PanGu-α in various scenarios including text summarization, question answering, dialogue generation, etc. Moreover, we investigate the effect of model scales on the few-shot performances across a broad range of Chinese NLP tasks. The experimental results demonstrate the superior capabilities of PanGu-α in performing various tasks under few-shot or zero-shot settings. -
45
Ferret
Apple
An End-to-End MLLM that Accept Any-Form Referring and Ground Anything in Response. Ferret Model - Hybrid Region Representation + Spatial-aware Visual Sampler enable fine-grained and open-vocabulary referring and grounding in MLLM. GRIT Dataset (~1.1M) - A Large-scale, Hierarchical, Robust ground-and-refer instruction tuning dataset. Ferret-Bench - A multimodal evaluation benchmark that jointly requires Referring/Grounding, Semantics, Knowledge, and Reasoning.Starting Price: Free -
46
GPT-4
OpenAI
GPT-4 (Generative Pre-trained Transformer 4) is a large-scale unsupervised language model, yet to be released by OpenAI. GPT-4 is the successor to GPT-3 and part of the GPT-n series of natural language processing models, and was trained on a dataset of 45TB of text to produce human-like text generation and understanding capabilities. Unlike most other NLP models, GPT-4 does not require additional training data for specific tasks. Instead, it can generate text or answer questions using only its own internally generated context as input. GPT-4 has been shown to be able to perform a wide variety of tasks without any task specific training data such as translation, summarization, question answering, sentiment analysis and more.Starting Price: $0.0200 per 1000 tokens -
47
LUIS
Microsoft
Language Understanding (LUIS): A machine learning-based service to build natural language into apps, bots, and IoT devices. Quickly create enterprise-ready, custom models that continuously improve. Add natural language to your apps. Designed to identify valuable information in conversations, LUIS interprets user goals (intents) and distills valuable information from sentences (entities), for a high quality, nuanced language model. LUIS integrates seamlessly with the Azure Bot Service, making it easy to create a sophisticated bot. Powerful developer tools are combined with customizable pre-built apps and entity dictionaries, such as Calendar, Music, and Devices, so you can build and deploy a solution more quickly. Dictionaries are mined from the collective knowledge of the web and supply billions of entries, helping your model to correctly identify valuable information from user conversations. Active learning is used to continuously improve the quality of the models. -
48
AI21 Studio
AI21 Studio
AI21 Studio provides API access to Jurassic-1 large-language-models. Our models power text generation and comprehension features in thousands of live applications. Take on any language task. Our Jurassic-1 models are trained to follow natural language instructions and require just a few examples to adapt to new tasks. Use our specialized APIs for common tasks like summarization, paraphrasing and more. Access superior results at a lower cost without reinventing the wheel. Need to fine-tune your own custom model? You're just 3 clicks away. Training is fast, affordable and trained models are deployed immediately. Give your users superpowers by embedding an AI co-writer in your app. Drive user engagement and success with features like long-form draft generation, paraphrasing, repurposing and custom auto-complete.Starting Price: $29 per month -
49
Llama 2
Meta
The next generation of our open source large language model. This release includes model weights and starting code for pretrained and fine-tuned Llama language models — ranging from 7B to 70B parameters. Llama 2 pretrained models are trained on 2 trillion tokens, and have double the context length than Llama 1. Its fine-tuned models have been trained on over 1 million human annotations. Llama 2 outperforms other open source language models on many external benchmarks, including reasoning, coding, proficiency, and knowledge tests. Llama 2 was pretrained on publicly available online data sources. The fine-tuned model, Llama-2-chat, leverages publicly available instruction datasets and over 1 million human annotations. We have a broad range of supporters around the world who believe in our open approach to today’s AI — companies that have given early feedback and are excited to build with Llama 2.Starting Price: Free -
50
GPT-J
EleutherAI
GPT-J is a cutting-edge language model created by the research organization EleutherAI. In terms of performance, GPT-J exhibits a level of proficiency comparable to that of OpenAI's renowned GPT-3 model in a range of zero-shot tasks. Notably, GPT-J has demonstrated the ability to surpass GPT-3 in tasks related to generating code. The latest iteration of this language model, known as GPT-J-6B, is built upon a linguistic dataset referred to as The Pile. This dataset, which is publicly available, encompasses a substantial volume of 825 gibibytes of language data, organized into 22 distinct subsets. While GPT-J shares certain capabilities with ChatGPT, it is important to note that GPT-J is not designed to operate as a chatbot; rather, its primary function is to predict text. In a significant development in March 2023, Databricks introduced Dolly, a model that follows instructions and is licensed under Apache.Starting Price: Free