Alternatives to PySpark
Compare PySpark alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to PySpark in 2024. Compare features, ratings, user reviews, pricing, and more from PySpark competitors and alternatives in order to make an informed decision for your business.
-
1
Google Cloud BigQuery
Google
BigQuery is a serverless, multicloud data warehouse that simplifies the process of working with all types of data so you can focus on getting valuable business insights quickly. At the core of Google’s data cloud, BigQuery allows you to simplify data integration, cost effectively and securely scale analytics, share rich data experiences with built-in business intelligence, and train and deploy ML models with a simple SQL interface, helping to make your organization’s operations more data-driven. -
2
StarTree
StarTree
StarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. • Gain critical real-time insights to run your business • Seamlessly integrate data streaming and batch data • High performance in throughput and low-latency at petabyte scale • Fully-managed cloud service • Tiered storage to optimize cloud performance & spend • Fully-secure & enterprise-ready -
3
Polars
Polars
Knowing of data wrangling habits, Polars exposes a complete Python API, including the full set of features to manipulate DataFrames using an expression language that will empower you to create readable and performant code. Polars is written in Rust, uncompromising in its choices to provide a feature-complete DataFrame API to the Rust ecosystem. Use it as a DataFrame library or as a query engine backend for your data models. -
4
Vaex
Vaex
At Vaex.io we aim to democratize big data and make it available to anyone, on any machine, at any scale. Cut development time by 80%, your prototype is your solution. Create automatic pipelines for any model. Empower your data scientists. Turn any laptop into a big data powerhouse, no clusters, no engineers. We provide reliable and fast data driven solutions. With our state-of-the-art technology we build and deploy machine learning models faster than anyone on the market. Turn your data scientist into big data engineers. We provide comprehensive training of your employees, enabling you to take full advantage of our technology. Combines memory mapping, a sophisticated expression system, and fast out-of-core algorithms. Efficiently visualize and explore big datasets, and build machine learning models on a single machine. -
5
Tumult Analytics
Tumult Analytics
Built and maintained by a team of differential privacy experts, and running in production at institutions like the U.S. Census Bureau. Runs on Spark and effortlessly supports input tables containing billions of rows. Supports a large and ever-growing list of aggregation functions, data transformation operators, and privacy definitions. Perform public and private joins, filters, or user-defined functions on your data. Compute counts, sums, quantiles, and more under multiple privacy models. Differential privacy is made easy, thanks to our simple tutorials and extensive documentation. Tumult Analytics is built on our sophisticated privacy foundation, Tumult Core, which mediates access to sensitive data and means that every program and application comes with an embedded proof of privacy. Built by composing small, easy-to-review components. Provably safe stability tracking and floating-point primitives. Uses a generic framework based on peer-reviewed research. -
6
pandas
pandas
pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language. Tools for reading and writing data between in-memory data structures and different formats: CSV and text files, Microsoft Excel, SQL databases, and the fast HDF5 format. Intelligent data alignment and integrated handling of missing data: gain automatic label-based alignment in computations and easily manipulate messy data into an orderly form.Aggregating or transforming data with a powerful group by engine allowing split-apply-combine operations on data sets. Time series-functionality: date range generation and frequency conversion, moving window statistics, date shifting and lagging. Even create domain-specific time offsets and join time series without losing data. -
7
Apache Spark
Apache Software Foundation
Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells. Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application. Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources. You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources. -
8
Spark Streaming
Apache Software Foundation
Spark Streaming brings Apache Spark's language-integrated API to stream processing, letting you write streaming jobs the same way you write batch jobs. It supports Java, Scala and Python. Spark Streaming recovers both lost work and operator state (e.g. sliding windows) out of the box, without any extra code on your part. By running on Spark, Spark Streaming lets you reuse the same code for batch processing, join streams against historical data, or run ad-hoc queries on stream state. Build powerful interactive applications, not just analytics. Spark Streaming is developed as part of Apache Spark. It thus gets tested and updated with each Spark release. You can run Spark Streaming on Spark's standalone cluster mode or other supported cluster resource managers. It also includes a local run mode for development. In production, Spark Streaming uses ZooKeeper and HDFS for high availability. -
9
Apache Hive
Apache Software Foundation
The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage using SQL. Structure can be projected onto data already in storage. A command line tool and JDBC driver are provided to connect users to Hive. Apache Hive is an open source project run by volunteers at the Apache Software Foundation. Previously it was a subproject of Apache® Hadoop®, but has now graduated to become a top-level project of its own. We encourage you to learn about the project and contribute your expertise. Traditional SQL queries must be implemented in the MapReduce Java API to execute SQL applications and queries over distributed data. Hive provides the necessary SQL abstraction to integrate SQL-like queries (HiveQL) into the underlying Java without the need to implement queries in the low-level Java API. -
10
VeloDB
VeloDB
Powered by Apache Doris, VeloDB is a modern data warehouse for lightning-fast analytics on real-time data at scale. Push-based micro-batch and pull-based streaming data ingestion within seconds. Storage engine with real-time upsert、append and pre-aggregation. Unparalleled performance in both real-time data serving and interactive ad-hoc queries. Not just structured but also semi-structured data. Not just real-time analytics but also batch processing. Not just run queries against internal data but also work as a federate query engine to access external data lakes and databases. Distributed design to support linear scalability. Whether on-premise deployment or cloud service, separation or integration of storage and compute, resource usage can be flexibly and efficiently adjusted according to workload requirements. Built on and fully compatible with open source Apache Doris. Support MySQL protocol, functions, and SQL for easy integration with other data tools. -
11
Tabular
Tabular
Tabular is an open table store from the creators of Apache Iceberg. Connect multiple computing engines and frameworks. Decrease query time and storage costs by up to 50%. Centralize enforcement of data access (RBAC) policies. Connect any query engine or framework, including Athena, BigQuery, Redshift, Snowflake, Databricks, Trino, Spark, and Python. Smart compaction, clustering, and other automated data services reduce storage costs and query times by up to 50%. Unify data access at the database or table. RBAC controls are simple to manage, consistently enforced, and easy to audit. Centralize your security down to the table. Tabular is easy to use plus it features high-powered ingestion, performance, and RBAC under the hood. Tabular gives you the flexibility to work with multiple “best of breed” compute engines based on their strengths. Assign privileges at the data warehouse database, table, or column level.Starting Price: $100 per month -
12
Apache Impala
Apache
Impala provides low latency and high concurrency for BI/analytic queries on the Hadoop ecosystem, including Iceberg, open data formats, and most cloud storage options. Impala also scales linearly, even in multitenant environments. Impala is integrated with native Hadoop security and Kerberos for authentication, and via the Ranger module, you can ensure that the right users and applications are authorized for the right data. Utilize the same file and data formats and metadata, security, and resource management frameworks as your Hadoop deployment, with no redundant infrastructure or data conversion/duplication. For Apache Hive users, Impala utilizes the same metadata and ODBC driver. Like Hive, Impala supports SQL, so you don't have to worry about reinventing the implementation wheel. With Impala, more users, whether using SQL queries or BI applications, can interact with more data through a single repository and metadata stored from source through analysis.Starting Price: Free -
13
Timeplus
Timeplus
Timeplus is a simple, powerful, and cost-efficient stream processing platform. All in a single binary, easily deployed anywhere. We help data teams process streaming and historical data quickly and intuitively, in organizations of all sizes and industries. Lightweight, single binary, without dependencies. End-to-end analytic streaming and historical functionalities. 1/10 the cost of similar open source frameworks. Turn real-time market and transaction data into real-time insights. Leverage append-only streams and key-value streams to monitor financial data. Implement real-time feature pipelines using Timeplus. One platform for all infrastructure logs, metrics, and traces, the three pillars supporting observability. In Timeplus, we support a wide range of data sources in our web console UI. You can also push data via REST API, or create external streams without copying data into Timeplus.Starting Price: $199 per month -
14
Arroyo
Arroyo
Scale from zero to millions of events per second. Arroyo ships as a single, compact binary. Run locally on MacOS or Linux for development, and deploy to production with Docker or Kubernetes. Arroyo is a new kind of stream processing engine, built from the ground up to make real-time easier than batch. Arroyo was designed from the start so that anyone with SQL experience can build reliable, efficient, and correct streaming pipelines. Data scientists and engineers can build end-to-end real-time applications, models, and dashboards, without a separate team of streaming experts. Transform, filter, aggregate, and join data streams by writing SQL, with sub-second results. Your streaming pipelines shouldn't page someone just because Kubernetes decided to reschedule your pods. Arroyo is built to run in modern, elastic cloud environments, from simple container runtimes like Fargate to large, distributed deployments on the Kubernetes logo Kubernetes. -
15
Dremio
Dremio
Dremio delivers lightning-fast queries and a self-service semantic layer directly on your data lake storage. No moving data to proprietary data warehouses, no cubes, no aggregation tables or extracts. Just flexibility and control for data architects, and self-service for data consumers. Dremio technologies like Data Reflections, Columnar Cloud Cache (C3) and Predictive Pipelining work alongside Apache Arrow to make queries on your data lake storage very, very fast. An abstraction layer enables IT to apply security and business meaning, while enabling analysts and data scientists to explore data and derive new virtual datasets. Dremio’s semantic layer is an integrated, searchable catalog that indexes all of your metadata, so business users can easily make sense of your data. Virtual datasets and spaces make up the semantic layer, and are all indexed and searchable. -
16
ksqlDB
Confluent
Now that your data is in motion, it’s time to make sense of it. Stream processing enables you to derive instant insights from your data streams, but setting up the infrastructure to support it can be complex. That’s why Confluent developed ksqlDB, the database purpose-built for stream processing applications. Make your data immediately actionable by continuously processing streams of data generated throughout your business. ksqlDB’s intuitive syntax lets you quickly access and augment data in Kafka, enabling development teams to seamlessly create real-time innovative customer experiences and fulfill data-driven operational needs. ksqlDB offers a single solution for collecting streams of data, enriching them, and serving queries on new derived streams and tables. That means less infrastructure to deploy, maintain, scale, and secure. With less moving parts in your data architecture, you can focus on what really matters -- innovation. -
17
Trino
Trino
Trino is a query engine that runs at ludicrous speed. Fast-distributed SQL query engine for big data analytics that helps you explore your data universe. Trino is a highly parallel and distributed query engine, that is built from the ground up for efficient, low-latency analytics. The largest organizations in the world use Trino to query exabyte-scale data lakes and massive data warehouses alike. Supports diverse use cases, ad-hoc analytics at interactive speeds, massive multi-hour batch queries, and high-volume apps that perform sub-second queries. Trino is an ANSI SQL-compliant query engine, that works with BI tools such as R, Tableau, Power BI, Superset, and many others. You can natively query data in Hadoop, S3, Cassandra, MySQL, and many others, without the need for complex, slow, and error-prone processes for copying the data. Access data from multiple systems within a single query.Starting Price: Free -
18
Amazon Timestream
Amazon
Amazon Timestream is a fast, scalable, and serverless time series database service for IoT and operational applications that makes it easy to store and analyze trillions of events per day up to 1,000 times faster and at as little as 1/10th the cost of relational databases. Amazon Timestream saves you time and cost in managing the lifecycle of time series data by keeping recent data in memory and moving historical data to a cost optimized storage tier based upon user defined policies. Amazon Timestream’s purpose-built query engine lets you access and analyze recent and historical data together, without needing to specify explicitly in the query whether the data resides in the in-memory or cost-optimized tier. Amazon Timestream has built-in time series analytics functions, helping you identify trends and patterns in your data in near real-time. -
19
Presto
Presto Foundation
Presto is an open source distributed SQL query engine for running interactive analytic queries against data sources of all sizes ranging from gigabytes to petabytes. For data engineers who struggle with managing multiple query languages and interfaces to siloed databases and storage, Presto is the fast and reliable engine that provides one simple ANSI SQL interface for all your data analytics and your open lakehouse. Different engines for different workloads means you will have to re-platform down the road. With Presto, you get 1 familar ANSI SQL language and 1 engine for your data analytics so you don't need to graduate to another lakehouse engine. Presto can be used for interactive and batch workloads, small and large amounts of data, and scales from a few to thousands of users. Presto gives you one simple ANSI SQL interface for all of your data in various siloed data systems, helping you join your data ecosystem together. -
20
LlamaIndex
LlamaIndex
LlamaIndex is a “data framework” to help you build LLM apps. Connect semi-structured data from API's like Slack, Salesforce, Notion, etc. LlamaIndex is a simple, flexible data framework for connecting custom data sources to large language models. LlamaIndex provides the key tools to augment your LLM applications with data. Connect your existing data sources and data formats (API's, PDF's, documents, SQL, etc.) to use with a large language model application. Store and index your data for different use cases. Integrate with downstream vector store and database providers. LlamaIndex provides a query interface that accepts any input prompt over your data and returns a knowledge-augmented response. Connect unstructured sources such as documents, raw text files, PDF's, videos, images, etc. Easily integrate structured data sources from Excel, SQL, etc. Provides ways to structure your data (indices, graphs) so that this data can be easily used with LLMs. -
21
Baidu Palo
Baidu AI Cloud
Palo helps enterprises to create the PB-level MPP architecture data warehouse service within several minutes and import the massive data from RDS, BOS, and BMR. Thus, Palo can perform the multi-dimensional analytics of big data. Palo is compatible with mainstream BI tools. Data analysts can analyze and display the data visually and gain insights quickly to assist decision-making. It has the industry-leading MPP query engine, with column storage, intelligent index,and vector execution functions. It can also provide in-library analytics, window functions, and other advanced analytics functions. You can create a materialized view and change the table structure without the suspension of service. It supports flexible and efficient data recovery. -
22
QuasarDB
QuasarDB
Quasar's brain is QuasarDB, a high-performance, distributed, column-oriented timeseries database management system designed from the ground up to deliver real-time on petascale use cases. Up to 20X less disk usage. Quasardb ingestion and compression capabilities are unmatched. Up to 10,000X faster feature extraction. QuasarDB can extract features in real-time from the raw data, thanks to the combination of a built-in map/reduce query engine, an aggregation engine that leverages SIMD from modern CPUs, and stochastic indexes that use virtually no disk space. The most cost-effective timeseries solution, thanks to its ultra-efficient resource usage, the capability to leverage object storage (S3), unique compression technology, and fair pricing model. Quasar runs everywhere, from 32-bit ARM devices to high-end Intel servers, from Edge Computing to the cloud or on-premises. -
23
Backtrace
Backtrace
Don’t let app, device, or game crashes get in the way of a great experience. Backtrace takes all the manual labor out of cross-platform crash and exception management so you can focus on shipping. Cross-platform callstack and event aggregation and monitoring. Process errors from panics, core dumps, minidumps, and during runtime across your stack with a single system. Backtrace generates structured, searchable error reports from your data. Automated analysis cuts down on time to resolution by surfacing important signals that lead engineers to crash root cause. Never worry about missing a clue with rich integrations into dashboards, notification, and workflow systems. Answer the questions that matter to you with Backtrace’s rich query engine. View a high-level overview of error frequency, prioritization, and trends across all your projects. Search through key data points and your own custom data across all your errors. -
24
labPortal
Analytical Information Systems
Perhaps you want to give your clients access to their LIMS data and reports via the web. AIS labPortal allows you to do just that. Paper copies of sample analyses needn’t be sent out in the post to customers. Using their unique login and security password, clients can access data from their computer, which is not only safer and less time-consuming but also more environmentally friendly. labPortal is a web-based portal that securely stores your clients’ sample information and data in the cloud, allowing them to easily access it instantly from their own desktop, tablet or phone. The labPortal interface is 'inbox' style which is simple and easy to use with an enhanced query engine, conditional highlighting and Microsoft Excel export. The software features a simple and easy-to-use sample registration form which allows users to pre-register samples online. Transcribing data is a time-consuming and tedious activity.Starting Price: $200 per month -
25
Qubole
Qubole
Qubole is a simple, open, and secure Data Lake Platform for machine learning, streaming, and ad-hoc analytics. Our platform provides end-to-end services that reduce the time and effort required to run Data pipelines, Streaming Analytics, and Machine Learning workloads on any cloud. No other platform offers the openness and data workload flexibility of Qubole while lowering cloud data lake costs by over 50 percent. Qubole delivers faster access to petabytes of secure, reliable and trusted datasets of structured and unstructured data for Analytics and Machine Learning. Users conduct ETL, analytics, and AI/ML workloads efficiently in end-to-end fashion across best-of-breed open source engines, multiple formats, libraries, and languages adapted to data volume, variety, SLAs and organizational policies. -
26
StarRocks
StarRocks
Whether you're working with a single table or multiple, you'll experience at least 300% better performance on StarRocks compared to other popular solutions. From streaming data to data capture, with a rich set of connectors, you can ingest data into StarRocks in real time for the freshest insights. A query engine that adapts to your use cases. Without moving your data or rewriting SQL, StarRocks provides the flexibility to scale your analytics on demand with ease. StarRocks enables a rapid journey from data to insight. StarRocks' performance is unmatched and provides a unified OLAP solution covering the most popular data analytics scenarios. Whether you're working with a single table or multiple, you'll experience at least 300% better performance on StarRocks compared to other popular solutions. StarRocks' built-in memory-and-disk-based caching framework is specifically designed to minimize the I/O overhead of fetching data from external storage to accelerate query performance.Starting Price: Free -
27
Amazon Athena
Amazon
Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run. Athena is easy to use. Simply point to your data in Amazon S3, define the schema, and start querying using standard SQL. Most results are delivered within seconds. With Athena, there’s no need for complex ETL jobs to prepare your data for analysis. This makes it easy for anyone with SQL skills to quickly analyze large-scale datasets. Athena is out-of-the-box integrated with AWS Glue Data Catalog, allowing you to create a unified metadata repository across various services, crawl data sources to discover schemas and populate your Catalog with new and modified table and partition definitions, and maintain schema versioning. -
28
Motif Analytics
Motif Analytics
Rich interactive visualizations for identifying patterns in user and business flows, with full visibility into underlying computation. A small set of sequence operations providing full expressivity and fine-grained control in under 10 lines of code. An incremental query engine to seamlessly trade between query precision, speed and cost according to your needs. Currently Motif uses a tiny custom-built DSL called Sequence Operations Language (SOL), which we believe is more natural to use than SQL and more powerful than a drag-and-drop interface. We built a custom engine to optimize sequence queries and are also trading off precision, which goes unused in decision-making, for query speed. -
29
ClickHouse
ClickHouse
ClickHouse is a fast open-source OLAP database management system. It is column-oriented and allows to generate analytical reports using SQL queries in real-time. ClickHouse's performance exceeds comparable column-oriented database management systems currently available on the market. It processes hundreds of millions to more than a billion rows and tens of gigabytes of data per single server per second. ClickHouse uses all available hardware to its full potential to process each query as fast as possible. Peak processing performance for a single query stands at more than 2 terabytes per second (after decompression, only used columns). In distributed setup reads are automatically balanced among healthy replicas to avoid increasing latency. ClickHouse supports multi-master asynchronous replication and can be deployed across multiple datacenters. All nodes are equal, which allows avoiding having single points of failure. -
30
Axibase Time Series Database
Axibase
Parallel query engine with time- and symbol-indexed data access. Extended SQL syntax with advanced filtering and aggregations. Consolidate quotes, trades, snapshots, and reference data in one place. Strategy backtesting on high-frequency data. Quantitative and market microstructure research. Granular transaction cost analysis and rollup reporting. Market surveillance and anomaly detection. Non-transparent ETF/ETN decomposition. FAST, SBE, and proprietary protocols. Plain text protocol. Consolidated and direct feeds. Built-in latency monitoring tools. End-of-day archives. ETL from institutional and retail financial data platforms. Parallel SQL engine with syntax extensions. Advanced filtering by trading session, auction stage, index composition. Optimized aggregates for OHLCV and VWAP calculations. Interactive SQL console with auto-completion. API endpoint for programmatic integration. Scheduled SQL reporting with email, file, and web delivery. JDBC and ODBC drivers. -
31
SSuite MonoBase Database
SSuite Office Software
Create relational or flat file databases with unlimited tables, fields, and rows. Includes a custom report builder. Interface with ODBC compatible databases and create custom reports for them. Create your own personal and custom databases. Some Highlights: - Filter tables instantly - Ultra simple graphical-user-interface - One click table and data form creation - Open up to 5 databases simultaneously - Export your data to comma separated files - Create custom reports for all your databases - Full helpfile to assist in creating database reports - Print tables and queries directly from the data grid - Supports any SQL standard that your ODBC compatible database requires Please install and run this database application with full administrator rights for best performance and user experience. Requires: . 1024x768 Display Size . Windows 98 / XP / 7 / 8 / 10 - 32bit and 64bit No Java or DotNet required. Green Energy Software. Saving the planet one bit at a time...Starting Price: Free -
32
Titan
DataStax
Titan is a scalable graph database optimized for storing and querying graphs containing hundreds of billions of vertices and edges distributed across a multi-machine cluster. Titan is a transactional database that can support thousands of concurrent users executing complex graph traversals in real time. Elastic and linear scalability for a growing data and user base. Data distribution and replication for performance and fault tolerance. Multi-datacenter high availability and hot backups. Support for ACID and eventual consistency. Support for various storage backends like Apache Cassandra, Apache HBase and Oracle BerkeleyDB. Support for global graph data analytics, reporting, and ETL through integration with big data platforms like Apache Spark, Apache Giraph and Apache Hadoop. Native integration with the TinkerPop graph stack for Gremlin graph query language, Gremlin graph server and Gremlin applications. -
33
Oracle Cloud Infrastructure (OCI) Data Flow is a fully managed Apache Spark service to perform processing tasks on extremely large data sets without infrastructure to deploy or manage. This enables rapid application delivery because developers can focus on app development, not infrastructure management. OCI Data Flow handles infrastructure provisioning, network setup, and teardown when Spark jobs are complete. Storage and security are also managed, which means less work is required for creating and managing Spark applications for big data analysis. With OCI Data Flow, there are no clusters to install, patch, or upgrade, which saves time and operational costs for projects. OCI Data Flow runs each Spark job in private dedicated resources, eliminating the need for upfront capacity planning. With OCI Data Flow, IT only needs to pay for the infrastructure resources that Spark jobs use while they are running.Starting Price: $0.0085 per GB per hour
-
34
Amazon EMR
Amazon
Amazon EMR is the industry-leading cloud big data platform for processing vast amounts of data using open-source tools such as Apache Spark, Apache Hive, Apache HBase, Apache Flink, Apache Hudi, and Presto. With EMR you can run Petabyte-scale analysis at less than half of the cost of traditional on-premises solutions and over 3x faster than standard Apache Spark. For short-running jobs, you can spin up and spin down clusters and pay per second for the instances used. For long-running workloads, you can create highly available clusters that automatically scale to meet demand. If you have existing on-premises deployments of open-source tools such as Apache Spark and Apache Hive, you can also run EMR clusters on AWS Outposts. Analyze data using open-source ML frameworks such as Apache Spark MLlib, TensorFlow, and Apache MXNet. Connect to Amazon SageMaker Studio for large-scale model training, analysis, and reporting. -
35
Beaker Notebook
Two Sigma Open Source
BeakerX is a collection of kernels and extensions to the Jupyter interactive computing environment. It provides JVM support, Spark cluster support, polyglot programming, interactive plots, tables, forms, publishing, and more. All of BeakerX’s JVM languages plus Python and JavaScript have APIs for interactive time-series, scatter plots, histograms, heatmaps, and treemaps. The widgets remain interactive in both notebooks saved to disk, and notebooks published to the web. They include unique features for handling many points, nanosecond resolution, zooming, and exporting. BeakerX’s table widget automatically recognizes pandas data frames and allows you to search, sort, drag, filter, format, select, graph, hide, pin, and export to CSV or clipboard. This makes connecting to spreadsheets quickly and easy. BeakerX has a Spark magic with GUIs for configuration, status, progress, and interrupt of Spark jobs. You can either use the GUI or create your own SparkSession with code. -
36
TIBA SPARK Suite Platform
TIBA Parking
The TIBA SPARK Suite Platform is cloud-based, web environment that allows parking operators and owners to control, manage, and monitor all their facilities from a central location. SPARK utilizes the successes of SmartPark, and expands the user experience in a streamlined and accessible way. Spark can be accessed from any Internet ready device — from virtually anywhere in the world. The architecture is built on the AWS platform and takes full advantage of modern, best-practice technology. It allows the Platform to be fault-tolerant, highly available, and to be dynamically scalable — ensuring a better user experience. It will also serve as the architecture for future global and/or consumer-facing product offerings. Customers maintain their independence. TIBA holds true to our belief that data ownership stays with our customers. SPARK expands on the mature, proven TIBA SmartPark logic engine. -
37
Apache Mahout
Apache Software Foundation
Apache Mahout is a powerful, scalable, and versatile machine learning library designed for distributed data processing. It offers a comprehensive set of algorithms for various tasks, including classification, clustering, recommendation, and pattern mining. Built on top of the Apache Hadoop ecosystem, Mahout leverages MapReduce and Spark to enable data processing on large-scale datasets. Apache Mahout(TM) is a distributed linear algebra framework and mathematically expressive Scala DSL designed to let mathematicians, statisticians, and data scientists quickly implement their own algorithms. Apache Spark is the recommended out-of-the-box distributed back-end or can be extended to other distributed backends. Matrix computations are a fundamental part of many scientific and engineering applications, including machine learning, computer vision, and data analysis. Apache Mahout is designed to handle large-scale data processing by leveraging the power of Hadoop and Spark. -
38
Azure Databricks
Microsoft
Unlock insights from all your data and build artificial intelligence (AI) solutions with Azure Databricks, set up your Apache Spark™ environment in minutes, autoscale, and collaborate on shared projects in an interactive workspace. Azure Databricks supports Python, Scala, R, Java, and SQL, as well as data science frameworks and libraries including TensorFlow, PyTorch, and scikit-learn. Azure Databricks provides the latest versions of Apache Spark and allows you to seamlessly integrate with open source libraries. Spin up clusters and build quickly in a fully managed Apache Spark environment with the global scale and availability of Azure. Clusters are set up, configured, and fine-tuned to ensure reliability and performance without the need for monitoring. Take advantage of autoscaling and auto-termination to improve total cost of ownership (TCO). -
39
TIBCO ComputeDB
TIBCO
TIBCO ComputeDB™ is a memory optimized database based on Apache Spark. It delivers very high throughput, low latency, and high concurrency for unified analytic workloads that may combine streaming, interactive analytics and artificial intelligence in a single, easy to manage distributed cluste -
40
Daft
Daft
Daft is a framework for ETL, analytics and ML/AI at scale. Its familiar Python dataframe API is built to outperform Spark in performance and ease of use. Daft plugs directly into your ML/AI stack through efficient zero-copy integrations with essential Python libraries such as Pytorch and Ray. It also allows requesting GPUs as a resource for running models. Daft runs locally with a lightweight multithreaded backend. When your local machine is no longer sufficient, it scales seamlessly to run out-of-core on a distributed cluster. Daft can handle User-Defined Functions (UDFs) in columns, allowing you to apply complex expressions and operations to Python objects with the full flexibility required for ML/AI. Daft runs locally with a lightweight multithreaded backend. When your local machine is no longer sufficient, it scales seamlessly to run out-of-core on a distributed cluster. -
41
BigBI
BigBI
BigBI enables data specialists to build their own powerful big data pipelines interactively & efficiently, without any coding! BigBI unleashes the power of Apache Spark enabling: Scalable processing of real Big Data (up to 100X faster) Integration of traditional data (SQL, batch files) with modern data sources including semi-structured (JSON, NoSQL DBs, Elastic, Hadoop), and unstructured (Text, Audio, video), Integration of streaming data, cloud data, AI/ML & graphs -
42
JanusGraph
JanusGraph
JanusGraph is a scalable graph database optimized for storing and querying graphs containing hundreds of billions of vertices and edges distributed across a multi-machine cluster. JanusGraph is a project under The Linux Foundation, and includes participants from Expero, Google, GRAKN.AI, Hortonworks, IBM and Amazon. Elastic and linear scalability for a growing data and user base. Data distribution and replication for performance and fault tolerance. Multi-datacenter high availability and hot backups. All functionality is totally free. No need to buy commercial licenses. JanusGraph is fully open source under the Apache 2 license. JanusGraph is a transactional database that can support thousands of concurrent users executing complex graph traversals in real time. Support for ACID and eventual consistency. In addition to online transactional processing (OLTP), JanusGraph supports global graph analytics (OLAP) with its Apache Spark integration. -
43
IBM Db2 Big SQL
IBM
A hybrid SQL-on-Hadoop engine delivering advanced, security-rich data query across enterprise big data sources, including Hadoop, object storage and data warehouses. IBM Db2 Big SQL is an enterprise-grade, hybrid ANSI-compliant SQL-on-Hadoop engine, delivering massively parallel processing (MPP) and advanced data query. Db2 Big SQL offers a single database connection or query for disparate sources such as Hadoop HDFS and WebHDFS, RDMS, NoSQL databases, and object stores. Benefit from low latency, high performance, data security, SQL compatibility, and federation capabilities to do ad hoc and complex queries. Db2 Big SQL is now available in 2 variations. It can be integrated with Cloudera Data Platform, or accessed as a cloud-native service on the IBM Cloud Pak® for Data platform. Access and analyze data and perform queries on batch and real-time data across sources, like Hadoop, object stores and data warehouses. -
44
PuppyGraph
PuppyGraph
PuppyGraph empowers you to seamlessly query one or multiple data stores as a unified graph model. Graph databases are expensive, take months to set up, and need a dedicated team. Traditional graph databases can take hours to run multi-hop queries and struggle beyond 100GB of data. A separate graph database complicates your architecture with brittle ETLs and inflates your total cost of ownership (TCO). Connect to any data source anywhere. Cross-cloud and cross-region graph analytics. No complex ETLs or data replication is required. PuppyGraph enables you to query your data as a graph by directly connecting to your data warehouses and lakes. This eliminates the need to build and maintain time-consuming ETL pipelines needed with a traditional graph database setup. No more waiting for data and failed ETL processes. PuppyGraph eradicates graph scalability issues by separating computation and storage.Starting Price: Free -
45
Starburst Enterprise
Starburst Data
Starburst helps you make better decisions with fast access to all your data; Without the complexity of data movement and copies. Your company has more data than ever before, but your data teams are stuck waiting to analyze it. Starburst unlocks access to data where it lives, no data movement required, giving your teams fast & accurate access to more data for analysis. Starburst Enterprise is a fully supported, production-tested and enterprise-grade distribution of open source Trino (formerly Presto® SQL). It improves performance and security while making it easy to deploy, connect, and manage your Trino environment. Through connecting to any source of data – whether it’s located on-premise, in the cloud, or across a hybrid cloud environment – Starburst lets your team use the analytics tools they already know & love while accessing data that lives anywhere. -
46
SPListX for SharePoint
Vyapin Software Systems
SPListX for SharePoint is a powerful rule-based query engine application to export document / picture library contents and associated metadata and list items, including associated file attachments to Windows File System. Export SharePoint site, libraries, folders, documents, list items, version histories, metadata and permissions to the desired destination location in Windows File System. SPListX supports SharePoint 2019 / SharePoint 2016 / SharePoint 2013 / SharePoint 2010 / SharePoint 2007 / SharePoint 2003 & Office 365.Starting Price: $1,299.00 -
47
DuckDB
DuckDB
Processing and storing tabular datasets, e.g. from CSV or Parquet files. Large result set transfer to client. Large client/server installations for centralized enterprise data warehousing. Writing to a single database from multiple concurrent processes. DuckDB is a relational database management system (RDBMS). That means it is a system for managing data stored in relations. A relation is essentially a mathematical term for a table. Each table is a named collection of rows. Each row of a given table has the same set of named columns, and each column is of a specific data type. Tables themselves are stored inside schemas, and a collection of schemas constitutes the entire database that you can access. -
48
Spark NLP
John Snow Labs
Experience the power of large language models like never before, unleashing the full potential of Natural Language Processing (NLP) with Spark NLP, the open source library that delivers scalable LLMs. The full code base is open under the Apache 2.0 license, including pre-trained models and pipelines. The only NLP library built natively on Apache Spark. The most widely used NLP library in the enterprise. Spark ML provides a set of machine learning applications that can be built using two main components, estimators and transformers. The estimators have a method that secures and trains a piece of data to such an application. The transformer is generally the result of a fitting process and applies changes to the target dataset. These components have been embedded to be applicable to Spark NLP. Pipelines are a mechanism for combining multiple estimators and transformers in a single workflow. They allow multiple chained transformations along a machine-learning task.Starting Price: Free -
49
IBM Watson Machine Learning is a full-service IBM Cloud offering that makes it easy for developers and data scientists to work together to integrate predictive capabilities with their applications. The Machine Learning service is a set of REST APIs that you can call from any programming language to develop applications that make smarter decisions, solve tough problems, and improve user outcomes. Take advantage of machine learning models management (continuous learning system) and deployment (online, batch, streaming). Select any of widely supported machine learning frameworks: TensorFlow, Keras, Caffe, PyTorch, Spark MLlib, scikit learn, xgboost and SPSS. Use the command-line interface and Python client to manage your artifacts. Extend your application with artificial intelligence through the Watson Machine Learning REST API.Starting Price: $0.575 per hour
-
50
BigLake
Google
BigLake is a storage engine that unifies data warehouses and lakes by enabling BigQuery and open-source frameworks like Spark to access data with fine-grained access control. BigLake provides accelerated query performance across multi-cloud storage and open formats such as Apache Iceberg. Store a single copy of data with uniform features across data warehouses & lakes. Fine-grained access control and multi-cloud governance over distributed data. Seamless integration with open-source analytics tools and open data formats. Unlock analytics on distributed data regardless of where and how it’s stored, while choosing the best analytics tools, open source or cloud-native over a single copy of data. Fine-grained access control across open source engines like Apache Spark, Presto, and Trino, and open formats such as Parquet. Performant queries over data lakes powered by BigQuery. Integrates with Dataplex to provide management at scale, including logical data organization.Starting Price: $5 per TB