Azure AI Search
Deliver high-quality responses with a vector database built for advanced retrieval augmented generation (RAG) and modern search. Focus on exponential growth with an enterprise-ready vector database that comes with security, compliance, and responsible AI practices built in. Build better applications with sophisticated retrieval strategies backed by decades of research and customer validation. Quickly deploy your generative AI app with seamless platform and data integrations for data sources, AI models, and frameworks. Automatically upload data from a wide range of supported Azure and third-party sources. Streamline vector data processing with built-in extraction, chunking, enrichment, and vectorization, all in one flow. Support for multivector, hybrid, multilingual, and metadata filtering. Move beyond vector-only search with keyword match scoring, reranking, geospatial search, and autocomplete.
Learn more
Vectorize
Vectorize is a platform designed to transform unstructured data into optimized vector search indexes, facilitating retrieval-augmented generation pipelines. It enables users to import documents or connect to external knowledge management systems, allowing Vectorize to extract natural language suitable for LLMs. The platform evaluates multiple chunking and embedding strategies in parallel, providing recommendations or allowing users to choose their preferred methods. Once a vector configuration is selected, Vectorize deploys it into a real-time vector pipeline that automatically updates with any data changes, ensuring accurate search results. The platform offers connectors to various knowledge repositories, collaboration platforms, and CRMs, enabling seamless integration of data into generative AI applications. Additionally, Vectorize supports the creation and updating of vector indexes in preferred vector databases.
Learn more
LlamaCloud
LlamaCloud, developed by LlamaIndex, is a fully managed service for parsing, ingesting, and retrieving data, enabling companies to create and deploy AI-driven knowledge applications. It provides a flexible and scalable pipeline for handling data in Retrieval-Augmented Generation (RAG) scenarios. LlamaCloud simplifies data preparation for LLM applications, allowing developers to focus on building business logic instead of managing data.
Learn more
Cohere Embed
Cohere's Embed is a leading multimodal embedding platform designed to transform text, images, or a combination of both into high-quality vector representations. These embeddings are optimized for semantic search, retrieval-augmented generation, classification, clustering, and agentic AI applications. The latest model, embed-v4.0, supports mixed-modality inputs, allowing users to combine text and images into a single embedding. It offers Matryoshka embeddings with configurable dimensions of 256, 512, 1024, or 1536, enabling flexibility in balancing performance and resource usage. With a context length of up to 128,000 tokens, embed-v4.0 is well-suited for processing large documents and complex data structures. It also supports compressed embedding types, including float, int8, uint8, binary, and ubinary, facilitating efficient storage and faster retrieval in vector databases. Multilingual support spans over 100 languages, making it a versatile tool for global applications.
Learn more