Alternatives to Phi-4-reasoning
Compare Phi-4-reasoning alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Phi-4-reasoning in 2025. Compare features, ratings, user reviews, pricing, and more from Phi-4-reasoning competitors and alternatives in order to make an informed decision for your business.
-
1
Phi-4-mini-reasoning
Microsoft
Phi-4-mini-reasoning is a 3.8-billion parameter transformer-based language model optimized for mathematical reasoning and step-by-step problem solving in environments with constrained computing or latency. Fine-tuned with synthetic data generated by the DeepSeek-R1 model, it balances efficiency with advanced reasoning ability. Trained on over one million diverse math problems spanning multiple levels of difficulty from middle school to Ph.D. level, Phi-4-mini-reasoning outperforms its base model on long sentence generation across various evaluations and surpasses larger models like OpenThinker-7B, Llama-3.2-3B-instruct, and DeepSeek-R1. It features a 128K-token context window and supports function calling, enabling integration with external tools and APIs. Phi-4-mini-reasoning can be quantized using Microsoft Olive or Apple MLX Framework for deployment on edge devices such as IoT, laptops, and mobile devices. -
2
Phi-4-reasoning-plus
Microsoft
Phi-4-reasoning-plus is a 14-billion parameter open-weight reasoning model that builds upon Phi-4-reasoning capabilities. It is further trained with reinforcement learning to utilize more inference-time compute, using 1.5x more tokens than Phi-4-reasoning, to deliver higher accuracy. Despite its significantly smaller size, Phi-4-reasoning-plus achieves better performance than OpenAI o1-mini and DeepSeek-R1 at most benchmarks, including mathematical reasoning and Ph.D. level science questions. It surpasses the full DeepSeek-R1 model (with 671 billion parameters) on the AIME 2025 test, the 2025 qualifier for the USA Math Olympiad. Phi-4-reasoning-plus is available on Azure AI Foundry and HuggingFace. -
3
Open R1
Open R1
Open R1 is a community-driven, open-source initiative aimed at replicating the advanced AI capabilities of DeepSeek-R1 through transparent methodologies. You can try Open R1 AI model or DeepSeek R1 free online chat on Open R1. The project offers a comprehensive implementation of DeepSeek-R1's reasoning-optimized training pipeline, including tools for GRPO training, SFT fine-tuning, and synthetic data generation, all under the MIT license. While the original training data remains proprietary, Open R1 provides the complete toolchain for users to develop and fine-tune their own models.Starting Price: Free -
4
DeepSeek R1
DeepSeek
DeepSeek-R1 is an advanced open-source reasoning model developed by DeepSeek, designed to rival OpenAI's Model o1. Accessible via web, app, and API, it excels in complex tasks such as mathematics and coding, demonstrating superior performance on benchmarks like the American Invitational Mathematics Examination (AIME) and MATH. DeepSeek-R1 employs a mixture of experts (MoE) architecture with 671 billion total parameters, activating 37 billion parameters per token, enabling efficient and accurate reasoning capabilities. This model is part of DeepSeek's commitment to advancing artificial general intelligence (AGI) through open-source innovation.Starting Price: Free -
5
DeepCoder
Agentica Project
DeepCoder is a fully open source code-reasoning and generation model released by Agentica Project in collaboration with Together AI. It is fine-tuned from DeepSeek-R1-Distilled-Qwen-14B using distributed reinforcement learning, achieving a 60.6% accuracy on LiveCodeBench (representing an 8% improvement over the base), a performance level that matches that of proprietary models such as o3-mini (2025-01-031 Low) and o1 while using only 14 billion parameters. It was trained over 2.5 weeks on 32 H100 GPUs with a curated dataset of roughly 24,000 coding problems drawn from verified sources (including TACO-Verified, PrimeIntellect SYNTHETIC-1, and LiveCodeBench submissions), each problem requiring a verifiable solution and at least five unit tests to ensure reliability for RL training. To handle long-range context, DeepCoder employs techniques such as iterative context lengthening and overlong filtering.Starting Price: Free -
6
DeepScaleR
Agentica Project
DeepScaleR is a 1.5-billion-parameter language model fine-tuned from DeepSeek-R1-Distilled-Qwen-1.5B using distributed reinforcement learning and a novel iterative context-lengthening strategy that gradually increases its context window from 8K to 24K tokens during training. It was trained on ~40,000 carefully curated mathematical problems drawn from competition-level datasets like AIME (1984–2023), AMC (pre-2023), Omni-MATH, and STILL. DeepScaleR achieves 43.1% accuracy on AIME 2024, a roughly 14.3 percentage point boost over the base model, and surpasses the performance of the proprietary O1-Preview model despite its much smaller size. It also posts strong results on a suite of math benchmarks (e.g., MATH-500, AMC 2023, Minerva Math, OlympiadBench), demonstrating that small, efficient models tuned with RL can match or exceed larger baselines on reasoning tasks.Starting Price: Free -
7
EXAONE Deep
LG
EXAONE Deep is a series of reasoning-enhanced language models developed by LG AI Research, featuring parameter sizes of 2.4 billion, 7.8 billion, and 32 billion. These models demonstrate superior capabilities in various reasoning tasks, including math and coding benchmarks. Notably, EXAONE Deep 2.4B outperforms other models of comparable size, EXAONE Deep 7.8B surpasses both open-weight models of similar scale and the proprietary reasoning model OpenAI o1-mini, and EXAONE Deep 32B shows competitive performance against leading open-weight models. The repository provides comprehensive documentation covering performance evaluations, quickstart guides for using EXAONE Deep models with Transformers, explanations of quantized EXAONE Deep weights in AWQ and GGUF formats, and instructions for running EXAONE Deep models locally using frameworks like llama.cpp and Ollama.Starting Price: Free -
8
kluster.ai
kluster.ai
Kluster.ai is a developer-centric AI cloud platform designed to deploy, scale, and fine-tune large language models (LLMs) with speed and efficiency. Built for developers by developers, it offers Adaptive Inference, a flexible and scalable service that adjusts seamlessly to workload demands, ensuring high-performance processing and consistent turnaround times. Adaptive Inference provides three distinct processing options: real-time inference for ultra-low latency needs, asynchronous inference for cost-effective handling of flexible timing tasks, and batch inference for efficient processing of high-volume, bulk tasks. It supports a range of open-weight, cutting-edge multimodal models for chat, vision, code, and more, including Meta's Llama 4 Maverick and Scout, Qwen3-235B-A22B, DeepSeek-R1, and Gemma 3 . Kluster.ai's OpenAI-compatible API allows developers to integrate these models into their applications seamlessly.Starting Price: $0.15per input -
9
Phi-4-mini-flash-reasoning
Microsoft
Phi-4-mini-flash-reasoning is a 3.8 billion‑parameter open model in Microsoft’s Phi family, purpose‑built for edge, mobile, and other resource‑constrained environments where compute, memory, and latency are tightly limited. It introduces the SambaY decoder‑hybrid‑decoder architecture with Gated Memory Units (GMUs) interleaved alongside Mamba state‑space and sliding‑window attention layers, delivering up to 10× higher throughput and a 2–3× reduction in latency compared to its predecessor without sacrificing advanced math and logic reasoning performance. Supporting a 64 K‑token context length and fine‑tuned on high‑quality synthetic data, it excels at long‑context retrieval, reasoning tasks, and real‑time inference, all deployable on a single GPU. Phi-4-mini-flash-reasoning is available today via Azure AI Foundry, NVIDIA API Catalog, and Hugging Face, enabling developers to build fast, scalable, logic‑intensive applications. -
10
Hunyuan T1
Tencent
Hunyuan T1 is Tencent's deep-thinking AI model, now fully open to all users through the Tencent Yuanbao platform. This model excels in understanding multiple dimensions and potential logical relationships, making it suitable for handling complex tasks. Users can experience various AI models on the platform, including DeepSeek-R1 and Tencent Hunyuan Turbo. The official version of the Tencent Hunyuan T1 model will also be launched soon, providing external API access and other services. Built upon Tencent's Hunyuan large language model, Yuanbao excels in Chinese language understanding, logical reasoning, and task execution. It offers AI-based search, summaries, and writing capabilities, enabling users to analyze documents and engage in prompt-based interactions. -
11
DeepSeek R2
DeepSeek
DeepSeek R2 is the anticipated successor to DeepSeek R1, a groundbreaking AI reasoning model launched in January 2025 by the Chinese AI startup DeepSeek. Building on R1’s success, which disrupted the AI industry with its cost-effective performance rivaling top-tier models like OpenAI’s o1, R2 promises a quantum leap in capabilities. It is expected to deliver exceptional speed and human-like reasoning, excelling in complex tasks such as advanced coding and high-level mathematical problem-solving. Leveraging DeepSeek’s innovative Mixture-of-Experts architecture and efficient training methods, R2 aims to outperform its predecessor while maintaining a low computational footprint, potentially expanding its reasoning abilities to languages beyond English.Starting Price: Free -
12
Tülu 3
Ai2
Tülu 3 is an advanced instruction-following language model developed by the Allen Institute for AI (Ai2), designed to enhance capabilities in areas such as knowledge, reasoning, mathematics, coding, and safety. Built upon the Llama 3 Base, Tülu 3 employs a comprehensive four-stage post-training process: meticulous prompt curation and synthesis, supervised fine-tuning on a diverse set of prompts and completions, preference tuning using both off- and on-policy data, and a novel reinforcement learning approach to bolster specific skills with verifiable rewards. This open-source model distinguishes itself by providing full transparency, including access to training data, code, and evaluation tools, thereby closing the performance gap between open and proprietary fine-tuning methods. Evaluations indicate that Tülu 3 outperforms other open-weight models of similar size, such as Llama 3.1-Instruct and Qwen2.5-Instruct, across various benchmarks.Starting Price: Free -
13
DeepSeek-V3.2-Speciale
DeepSeek
DeepSeek-V3.2-Speciale is a high-compute variant of the DeepSeek-V3.2 model, created specifically for deep reasoning and advanced problem-solving tasks. It builds on DeepSeek Sparse Attention (DSA), a custom long-context attention mechanism that reduces computational overhead while preserving high performance. Through a large-scale reinforcement learning framework and extensive post-training compute, the Speciale variant surpasses GPT-5 on reasoning benchmarks and matches the capabilities of Gemini-3.0-Pro. The model achieved gold-medal performance in the International Mathematical Olympiad (IMO) 2025 and International Olympiad in Informatics (IOI) 2025. DeepSeek-V3.2-Speciale does not support tool-calling, making it purely optimized for uninterrupted reasoning and analytical accuracy. Released under the MIT license, it provides researchers and developers an open, state-of-the-art model focused entirely on high-precision reasoning.Starting Price: Free -
14
DeepSeek-V3
DeepSeek
DeepSeek-V3 is a state-of-the-art AI model designed to deliver unparalleled performance in natural language understanding, advanced reasoning, and decision-making tasks. Leveraging next-generation neural architectures, it integrates extensive datasets and fine-tuned algorithms to tackle complex challenges across diverse domains such as research, development, business intelligence, and automation. With a focus on scalability and efficiency, DeepSeek-V3 provides developers and enterprises with cutting-edge tools to accelerate innovation and achieve transformative outcomes.Starting Price: Free -
15
Stable Beluga
Stability AI
Stability AI and its CarperAI lab proudly announce Stable Beluga 1 and its successor Stable Beluga 2 (formerly codenamed FreeWilly), two powerful new, open access, Large Language Models (LLMs). Both models demonstrate exceptional reasoning ability across varied benchmarks. Stable Beluga 1 leverages the original LLaMA 65B foundation model and was carefully fine-tuned with a new synthetically-generated dataset using Supervised Fine-Tune (SFT) in standard Alpaca format. Similarly, Stable Beluga 2 leverages the LLaMA 2 70B foundation model to achieve industry-leading performance.Starting Price: Free -
16
DeepSeek-V3.2
DeepSeek
DeepSeek-V3.2 is a next-generation open large language model designed for efficient reasoning, complex problem solving, and advanced agentic behavior. It introduces DeepSeek Sparse Attention (DSA), a long-context attention mechanism that dramatically reduces computation while preserving performance. The model is trained with a scalable reinforcement learning framework, allowing it to achieve results competitive with GPT-5 and even surpass it in its Speciale variant. DeepSeek-V3.2 also includes a large-scale agent task synthesis pipeline that generates structured reasoning and tool-use demonstrations for post-training. The model features an updated chat template with new tool-calling logic and the optional developer role for agent workflows. With gold-medal performance in the IMO and IOI 2025 competitions, DeepSeek-V3.2 demonstrates elite reasoning capabilities for both research and applied AI scenarios.Starting Price: Free -
17
ERNIE X1 Turbo
Baidu
ERNIE X1 Turbo, developed by Baidu, is an advanced deep reasoning AI model introduced at the Baidu Create 2025 conference. Designed to handle complex multi-step tasks such as problem-solving, literary creation, and code generation, this model outperforms competitors like DeepSeek R1 in terms of reasoning abilities. With a focus on multimodal capabilities, ERNIE X1 Turbo supports text, audio, and image processing, making it an incredibly versatile AI solution. Despite its cutting-edge technology, it is priced at just a fraction of the cost of other top-tier models, offering a high-value solution for businesses and developers.Starting Price: $0.14 per 1M tokens -
18
DeepSeekMath
DeepSeek
DeepSeekMath is a specialized 7B parameter language model developed by DeepSeek-AI, designed to push the boundaries of mathematical reasoning in open-source language models. It starts from the DeepSeek-Coder-v1.5 7B model and undergoes further pre-training with 120B math-related tokens sourced from Common Crawl, alongside natural language and code data. DeepSeekMath has demonstrated remarkable performance, achieving a 51.7% score on the competition-level MATH benchmark without external tools or voting techniques, closely competing with the likes of Gemini-Ultra and GPT-4. The model's capabilities are enhanced by a meticulous data selection pipeline and the introduction of Group Relative Policy Optimization (GRPO), which optimizes both mathematical reasoning and memory usage. DeepSeekMath is available in base, instruct, and RL versions, supporting both research and commercial use, and is aimed at those looking to explore or apply advanced mathematical problem-solving in AI contexts.Starting Price: Free -
19
Sky-T1
NovaSky
Sky-T1-32B-Preview is an open source reasoning model developed by the NovaSky team at UC Berkeley's Sky Computing Lab. It matches the performance of proprietary models like o1-preview on reasoning and coding benchmarks, yet was trained for under $450, showcasing the feasibility of cost-effective, high-level reasoning capabilities. The model was fine-tuned from Qwen2.5-32B-Instruct using a curated dataset of 17,000 examples across diverse domains, including math and coding. The training was completed in 19 hours on eight H100 GPUs with DeepSpeed Zero-3 offloading. All aspects of the project, including data, code, and model weights, are fully open-source, empowering the academic and open-source communities to replicate and enhance the model's performance.Starting Price: Free -
20
Llama 2
Meta
The next generation of our open source large language model. This release includes model weights and starting code for pretrained and fine-tuned Llama language models — ranging from 7B to 70B parameters. Llama 2 pretrained models are trained on 2 trillion tokens, and have double the context length than Llama 1. Its fine-tuned models have been trained on over 1 million human annotations. Llama 2 outperforms other open source language models on many external benchmarks, including reasoning, coding, proficiency, and knowledge tests. Llama 2 was pretrained on publicly available online data sources. The fine-tuned model, Llama-2-chat, leverages publicly available instruction datasets and over 1 million human annotations. We have a broad range of supporters around the world who believe in our open approach to today’s AI — companies that have given early feedback and are excited to build with Llama 2.Starting Price: Free -
21
gpt-oss-120b
OpenAI
gpt-oss-120b is a reasoning model engineered for deep, transparent thinking, delivering full chain-of-thought explanations, adjustable reasoning depth, and structured outputs, while natively invoking tools like web search and Python execution via the API. Built to slot seamlessly into self-hosted or edge deployments, it eliminates dependence on proprietary infrastructure. Although it includes default safety guardrails, its open-weight architecture allows fine-tuning that could override built-in controls, so implementers are responsible for adding input filtering, output monitoring, and governance measures to achieve enterprise-grade security. As a community–driven model card rather than a managed service spec, it emphasizes transparency, customization, and the need for downstream safety practices. -
22
Hermes 3
Nous Research
Experiment, and push the boundaries of individual alignment, artificial consciousness, open-source software, and decentralization, in ways that monolithic companies and governments are too afraid to try. Hermes 3 contains advanced long-term context retention and multi-turn conversation capability, complex roleplaying and internal monologue abilities, and enhanced agentic function-calling. Our training data aggressively encourages the model to follow the system and instruction prompts exactly and in an adaptive manner. Hermes 3 was created by fine-tuning Llama 3.1 8B, 70B, and 405B, and training on a dataset of primarily synthetically generated responses. The model boasts comparable and superior performance to Llama 3.1 while unlocking deeper capabilities in reasoning and creativity. Hermes 3 is a series of instruct and tool-use models with strong reasoning and creative abilities.Starting Price: Free -
23
Olmo 3
Ai2
Olmo 3 is a fully open model family spanning 7 billion and 32 billion parameter variants that delivers not only high-performing base, reasoning, instruction, and reinforcement-learning models, but also exposure of the entire model flow, including raw training data, intermediate checkpoints, training code, long-context support (65,536 token window), and provenance tooling. Starting with the Dolma 3 dataset (≈9 trillion tokens) and its disciplined mix of web text, scientific PDFs, code, and long-form documents, the pre-training, mid-training, and long-context phases shape the base models, which are then post-trained via supervised fine-tuning, direct preference optimisation, and RL with verifiable rewards to yield the Think and Instruct variants. The 32 B Think model is described as the strongest fully open reasoning model to date, competitively close to closed-weight peers in math, code, and complex reasoning.Starting Price: Free -
24
Azure OpenAI Service
Microsoft
Apply advanced coding and language models to a variety of use cases. Leverage large-scale, generative AI models with deep understandings of language and code to enable new reasoning and comprehension capabilities for building cutting-edge applications. Apply these coding and language models to a variety of use cases, such as writing assistance, code generation, and reasoning over data. Detect and mitigate harmful use with built-in responsible AI and access enterprise-grade Azure security. Gain access to generative models that have been pretrained with trillions of words. Apply them to new scenarios including language, code, reasoning, inferencing, and comprehension. Customize generative models with labeled data for your specific scenario using a simple REST API. Fine-tune your model's hyperparameters to increase accuracy of outputs. Use the few-shot learning capability to provide the API with examples and achieve more relevant results.Starting Price: $0.0004 per 1000 tokens -
25
GPT-5.2 Thinking
OpenAI
GPT-5.2 Thinking is the highest-capability configuration in OpenAI’s GPT-5.2 model family, engineered for deep, expert-level reasoning, complex task execution, and advanced problem solving across long contexts and professional domains. Built on the foundational GPT-5.2 architecture with improvements in grounding, stability, and reasoning quality, this variant applies more compute and reasoning effort to generate responses that are more accurate, structured, and contextually rich when handling highly intricate workflows, multi-step analysis, and domain-specific challenges. GPT-5.2 Thinking excels at tasks that require sustained logical coherence, such as detailed research synthesis, advanced coding and debugging, complex data interpretation, strategic planning, and sophisticated technical writing, and it outperforms lighter variants on benchmarks that test professional skills and deep comprehension. -
26
OpenAI o3-mini
OpenAI
OpenAI o3-mini is a lightweight version of the advanced o3 AI model, offering powerful reasoning capabilities in a more efficient and accessible package. Designed to break down complex instructions into smaller, manageable steps, o3-mini excels in coding tasks, competitive programming, and problem-solving in mathematics and science. This compact model provides the same high-level precision and logic as its larger counterpart but with reduced computational requirements, making it ideal for use in resource-constrained environments. With built-in deliberative alignment, o3-mini ensures safe, ethical, and context-aware decision-making, making it a versatile tool for developers, researchers, and businesses seeking a balance between performance and efficiency. -
27
OpenAI o3-mini-high
OpenAI
The o3-mini-high model from OpenAI advances AI reasoning by refining deep problem-solving in coding, mathematics, and complex tasks. It features adaptive thinking time with adjustable reasoning modes (low, medium, high) to optimize performance based on task complexity. Outperforming the o1 series by 200 Elo points on Codeforces, it delivers high efficiency at a lower cost while maintaining speed and accuracy. As part of the o3 family, it pushes AI problem-solving boundaries while remaining accessible, offering a free tier and expanded limits for Plus subscribers. -
28
GigaChat 3 Ultra
Sberbank
GigaChat 3 Ultra is a 702-billion-parameter Mixture-of-Experts model built from scratch to deliver frontier-level reasoning, multilingual capability, and deep Russian-language fluency. It activates just 36 billion parameters per token, enabling massive scale with practical inference speeds. The model was trained on a 14-trillion-token corpus combining natural, multilingual, and high-quality synthetic data to strengthen reasoning, math, coding, and linguistic performance. Unlike modified foreign checkpoints, GigaChat 3 Ultra is entirely original—giving developers full control, modern alignment, and a dataset free of inherited limitations. Its architecture leverages MoE, MTP, and MLA to match open-source ecosystems and integrate easily with popular inference and fine-tuning tools. With leading results on Russian benchmarks and competitive performance on global tasks, GigaChat 3 Ultra represents one of the largest and most capable open-source LLMs in the world.Starting Price: Free -
29
Smaug-72B
Abacus
Smaug-72B is a powerful open-source large language model (LLM) known for several key features: High Performance: It currently holds the top spot on the Hugging Face Open LLM leaderboard, surpassing models like GPT-3.5 in various benchmarks. This means it excels at tasks like understanding, responding to, and generating human-like text. Open Source: Unlike many other advanced LLMs, Smaug-72B is freely available for anyone to use and modify, fostering collaboration and innovation in the AI community. Focus on Reasoning and Math: It specifically shines in handling reasoning and mathematical tasks, attributing this strength to unique fine-tuning techniques developed by Abacus AI, the creators of Smaug-72B. Based on Qwen-72B: It's technically a fine-tuned version of another powerful LLM called Qwen-72B, released by Alibaba, further improving upon its capabilities. Overall, Smaug-72B represents a significant step forward in open-source AI.Starting Price: Free -
30
DeepSeek-Coder-V2
DeepSeek
DeepSeek-Coder-V2 is an open source code language model designed to excel in programming and mathematical reasoning tasks. It features a Mixture-of-Experts (MoE) architecture with 236 billion total parameters and 21 billion activated parameters per token, enabling efficient processing and high performance. The model was trained on an extensive dataset of 6 trillion tokens, enhancing its capabilities in code generation and mathematical problem-solving. DeepSeek-Coder-V2 supports over 300 programming languages and has demonstrated superior performance on benchmarks such surpassing other models. It is available in multiple variants, including DeepSeek-Coder-V2-Instruct, optimized for instruction-based tasks; DeepSeek-Coder-V2-Base, suitable for general text generation; and lightweight versions like DeepSeek-Coder-V2-Lite-Base and DeepSeek-Coder-V2-Lite-Instruct, designed for environments with limited computational resources. -
31
Elemental Cognition
Elemental Cognition
Solve complex business problems when you can’t afford to be wrong. Use Elemental Cognition AI to deploy applications with transparent, provably correct reasoning. Large language models alone can’t be trusted to solve complex business problems. Deploy AI apps that explore and optimally solve complex problems when precision, accuracy, and transparency matter. Capture expert knowledge conversationally and turn it into a program automatically. Elemental Cognition compiles an easy-to-read English document into constraint-solving code so anyone can understand, test, and fine-tune the business logic governing your application. Manage the tradeoffs in hard problems and make sure your app never goes off the rails. Scale real-time constraint solving and optimization customized for your business using interactive AI that understands, reasons, and resolves complex tradeoffs to help users make the best decision. -
32
Amazon Nova 2 Lite
Amazon
Nova 2 Lite is a lightweight, high-speed reasoning model designed to handle everyday AI workloads across text, images, and video. It can generate clear, context-aware responses and lets users fine-tune how much internal reasoning the model performs before producing an answer. This adjustable “thinking depth” gives teams the flexibility to choose faster replies or more detailed problem-solving depending on the task. It stands out for customer service bots, automated document handling, and general business workflow support. Nova 2 Lite delivers strong performance across standard evaluation tests. It performs on par with or better than comparable compact models in most benchmark categories, demonstrating reliable comprehension and response quality. Its strengths include interpreting complex documents, pulling accurate insights from video content, generating usable code, and delivering grounded answers based on provided information. -
33
QwQ-32B
Alibaba
QwQ-32B is an advanced reasoning model developed by Alibaba Cloud's Qwen team, designed to enhance AI's problem-solving capabilities. With 32 billion parameters, it achieves performance comparable to state-of-the-art models like DeepSeek's R1, which has 671 billion parameters. This efficiency is achieved through optimized parameter utilization, allowing QwQ-32B to perform complex tasks such as mathematical reasoning, coding, and general problem-solving with fewer resources. The model supports a context length of up to 32,000 tokens, enabling it to process extensive input data effectively. QwQ-32B is accessible via Alibaba's chatbot service, Qwen Chat, and is open sourced under the Apache 2.0 license, promoting collaboration and further development within the AI community.Starting Price: Free -
34
DeepSWE
Agentica Project
DeepSWE is a fully open source, state-of-the-art coding agent built on top of the Qwen3-32B foundation model and trained exclusively via reinforcement learning (RL), without supervised finetuning or distillation from proprietary models. It is developed using rLLM, Agentica’s open source RL framework for language agents. DeepSWE operates as an agent; it interacts with a simulated development environment (via the R2E-Gym environment) using a suite of tools (file editor, search, shell-execution, submit/finish), enabling it to navigate codebases, edit multiple files, compile/run tests, and iteratively produce patches or complete engineering tasks. DeepSWE exhibits emergent behaviors beyond simple code generation; when presented with bugs or feature requests, the agent reasons about edge cases, seeks existing tests in the repository, proposes patches, writes extra tests for regressions, and dynamically adjusts its “thinking” effort.Starting Price: Free -
35
Claude Sonnet 3.7
Anthropic
Claude Sonnet 3.7, developed by Anthropic, is a cutting-edge AI model that combines rapid response with deep reflective reasoning. This innovative model allows users to toggle between quick, efficient responses and more thoughtful, reflective answers, making it ideal for complex problem-solving. By allowing Claude to self-reflect before answering, it excels at tasks that require high-level reasoning and nuanced understanding. With its ability to engage in deeper thought processes, Claude Sonnet 3.7 enhances tasks such as coding, natural language processing, and critical thinking applications. Available across various platforms, it offers a powerful tool for professionals and organizations seeking a high-performance, adaptable AI.Starting Price: Free -
36
NVIDIA Cosmos
NVIDIA
NVIDIA Cosmos is a developer-first platform of state-of-the-art generative World Foundation Models (WFMs), advanced video tokenizers, guardrails, and an accelerated data processing and curation pipeline designed to supercharge physical AI development. It enables developers working on autonomous vehicles, robotics, and video analytics AI agents to generate photorealistic, physics-aware synthetic video data, trained on an immense dataset including 20 million hours of real-world and simulated video, to rapidly simulate future scenarios, train world models, and fine‑tune custom behaviors. It includes three core WFM types; Cosmos Predict, capable of generating up to 30 seconds of continuous video from multimodal inputs; Cosmos Transfer, which adapts simulations across environments and lighting for versatile domain augmentation; and Cosmos Reason, a vision-language model that applies structured reasoning to interpret spatial-temporal data for planning and decision-making.Starting Price: Free -
37
NVIDIA Llama Nemotron
NVIDIA
NVIDIA Llama Nemotron is a family of advanced language models optimized for reasoning and a diverse set of agentic AI tasks. These models excel in graduate-level scientific reasoning, advanced mathematics, coding, instruction following, and tool calls. Designed for deployment across various platforms, from data centers to PCs, they offer the flexibility to toggle reasoning capabilities on or off, reducing inference costs when deep reasoning isn't required. The Llama Nemotron family includes models tailored for different deployment needs. Built upon Llama models and enhanced by NVIDIA through post-training, these models demonstrate improved accuracy, up to 20% over base models, and optimized inference speeds, achieving up to five times the performance of other leading open reasoning models. This efficiency enables handling more complex reasoning tasks, enhances decision-making capabilities, and reduces operational costs for enterprises. -
38
Command A Reasoning
Cohere AI
Command A Reasoning is Cohere’s most advanced enterprise-ready language model, engineered for high-stakes reasoning tasks and seamless integration into AI agent workflows. The model delivers exceptional reasoning performance, efficiency, and controllability, scaling across multi-GPU setups with support for up to 256,000-token context windows, ideal for handling long documents and multi-step agentic tasks. Organizations can fine-tune output precision and latency through a token budget, allowing a single model to flexibly serve both high-accuracy and high-throughput use cases. It powers Cohere’s North platform with leading benchmark performance and excels in multilingual contexts across 23 languages. Designed with enterprise safety in mind, it balances helpfulness with robust safeguards against harmful outputs. A lightweight deployment option allows running the model securely on a single H100 or A100 GPU, simplifying private, scalable use. -
39
Qwen2.5-VL-32B
Alibaba
Qwen2.5-VL-32B is a state-of-the-art AI model designed for multimodal tasks, offering advanced capabilities in both text and image reasoning. It builds upon the earlier Qwen2.5-VL series, improving response quality with more human-like, formatted answers. The model excels in mathematical reasoning, fine-grained image understanding, and complex, multi-step reasoning tasks, such as those found in MathVista and MMMU benchmarks. Its superior performance has been demonstrated in comparison to other models, outperforming the larger Qwen2-VL-72B in certain areas. With improved image parsing and visual logic deduction, Qwen2.5-VL-32B provides a detailed, accurate analysis of images and can generate responses based on complex visual inputs. It has been optimized for both text and image tasks, making it ideal for applications requiring sophisticated reasoning and understanding across different media. -
40
DeepSeek-V2
DeepSeek
DeepSeek-V2 is a state-of-the-art Mixture-of-Experts (MoE) language model introduced by DeepSeek-AI, characterized by its economical training and efficient inference capabilities. With a total of 236 billion parameters, of which only 21 billion are active per token, it supports a context length of up to 128K tokens. DeepSeek-V2 employs innovative architectures like Multi-head Latent Attention (MLA) for efficient inference by compressing the Key-Value (KV) cache and DeepSeekMoE for cost-effective training through sparse computation. This model significantly outperforms its predecessor, DeepSeek 67B, by saving 42.5% in training costs, reducing the KV cache by 93.3%, and enhancing generation throughput by 5.76 times. Pretrained on an 8.1 trillion token corpus, DeepSeek-V2 excels in language understanding, coding, and reasoning tasks, making it a top-tier performer among open-source models.Starting Price: Free -
41
ModelArk
ByteDance
ModelArk is ByteDance’s one-stop large model service platform, providing access to cutting-edge AI models for video, image, and text generation. With powerful options like Seedance 1.0 for video, Seedream 3.0 for image creation, and DeepSeek-V3.1 for reasoning, it enables businesses and developers to build scalable, AI-driven applications. Each model is backed by enterprise-grade security, including end-to-end encryption, data isolation, and auditability, ensuring privacy and compliance. The platform’s token-based pricing keeps costs transparent, starting with 500,000 free inference tokens per LLM and 2 million tokens per vision model. Developers can quickly integrate APIs for inference, fine-tuning, evaluation, and plugins to extend model capabilities. Designed for scalability, ModelArk offers fast deployment, high GPU availability, and seamless enterprise integration. -
42
MathGPT.ai
MathGPT.ai
MathGPT.ai is an AI-driven, cheat-proof math tutoring and course management platform that seamlessly combines a smart course creator with an AI tutor and assignment manager. Educators can integrate pre-loaded OER content, upload custom textbooks, lecture notes, or other resources, then deliver interactive learning experiences as students work directly “within” their materials. The platform guides students through problems using step-by-step reasoning, personalized coaching, and real-time feedback to build deep understanding and confidence. Its proprietary, deterministic AI model is specifically optimized for high accuracy in mathematical reasoning, avoiding typical LLM approximations. Trusted by classrooms, it also features live demos that show how it solves problems and adapts to learning styles, while reinforcing STEM education through curriculum-aligned, infinitely patient instruction.Starting Price: $25 per month -
43
Amazon Nova 2 Pro
Amazon
Amazon Nova 2 Pro is Amazon’s most advanced reasoning model, designed to handle highly complex, multimodal tasks across text, images, video, and speech with exceptional accuracy. It excels in deep problem-solving scenarios such as agentic coding, multi-document analysis, long-range planning, and advanced math. With benchmark performance equal or superior to leading models like Claude Sonnet 4.5, GPT-5.1, and Gemini Pro, Nova 2 Pro delivers top-tier intelligence across a wide range of enterprise workloads. The model includes built-in web grounding and code execution, ensuring responses remain factual, current, and contextually accurate. Nova 2 Pro can also serve as a “teacher model,” enabling knowledge distillation into smaller, purpose-built variants for specific domains. It is engineered for organizations that require precision, reliability, and frontier-level reasoning in mission-critical AI applications. -
44
Gemini 1.5 Pro
Google
The Gemini 1.5 Pro AI model is a state-of-the-art language model designed to deliver highly accurate, context-aware, and human-like responses across a variety of applications. Built with cutting-edge neural architecture, it excels in natural language understanding, generation, and reasoning tasks. The model is fine-tuned for versatility, supporting tasks like content creation, code generation, data analysis, and complex problem-solving. Its advanced algorithms ensure nuanced comprehension, enabling it to adapt to different domains and conversational styles seamlessly. With a focus on scalability and efficiency, the Gemini 1.5 Pro is optimized for both small-scale implementations and enterprise-level integrations, making it a powerful tool for enhancing productivity and innovation. -
45
OpenAI o1
OpenAI
OpenAI o1 represents a new series of AI models designed by OpenAI, focusing on enhanced reasoning capabilities. These models, including o1-preview and o1-mini, are trained using a novel reinforcement learning approach to spend more time "thinking" through problems before providing answers. This approach allows o1 to excel in complex problem-solving tasks in areas like coding, mathematics, and science, outperforming previous models like GPT-4o in certain benchmarks. The o1 series aims to tackle challenges that require deeper thought processes, marking a significant step towards AI systems that can reason more like humans, although it's still in the preview stage with ongoing improvements and evaluations. -
46
Llama 3.3
Meta
Llama 3.3 is the latest iteration in the Llama series of language models, developed to push the boundaries of AI-powered understanding and communication. With enhanced contextual reasoning, improved language generation, and advanced fine-tuning capabilities, Llama 3.3 is designed to deliver highly accurate, human-like responses across diverse applications. This version features a larger training dataset, refined algorithms for nuanced comprehension, and reduced biases compared to its predecessors. Llama 3.3 excels in tasks such as natural language understanding, creative writing, technical explanation, and multilingual communication, making it an indispensable tool for businesses, developers, and researchers. Its modular architecture allows for customizable deployment in specialized domains, ensuring versatility and performance at scale.Starting Price: Free -
47
QVQ-Max
Alibaba
QVQ-Max is a visual reasoning model designed to analyze and understand visual content, allowing users to solve complex problems with the help of images, videos, and diagrams. By combining deep reasoning and detailed observation, QVQ-Max can identify objects in photos, process mathematical problems, and even predict the next scene in a video. It also aids in creative tasks, from generating illustrations to writing video scripts, offering a versatile tool for both work and personal use. This first iteration, though still evolving, demonstrates impressive potential in various fields like education, professional work, and everyday problem-solving.Starting Price: Free -
48
OpenAI o4-mini
OpenAI
The o4-mini model is a compact and efficient version of the o3 model, released following the launch of GPT-4.1. It offers enhanced reasoning capabilities, with improved performance in tasks that require complex reasoning and problem-solving. The o4-mini is designed to meet the growing demand for advanced AI solutions, serving as a more efficient alternative while maintaining the capabilities of its predecessor. This model is part of OpenAI's strategy to refine and advance their AI technologies ahead of the anticipated GPT-5 launch. -
49
Humiris AI
Humiris AI
Humiris AI is a next-generation AI infrastructure platform that enables developers to build advanced applications by integrating multiple Large Language Models (LLMs). It offers a multi-LLM routing and reasoning layer, allowing users to optimize generative AI workflows with a flexible, scalable infrastructure. Humiris AI supports various use cases, including chatbot development, fine-tuning multiple LLMs simultaneously, retrieval-augmented generation, building super reasoning agents, advanced data analysis, and code generation. The platform's unique data format adapts to all foundation models, facilitating seamless integration and optimization. To get started, users can register for an account, create a project, add LLM provider API keys, and define parameters to generate a mixed model tailored to their specific needs. It allows deployment on users' own infrastructure, ensuring full data sovereignty and compliance with internal and external regulations. -
50
Solar Pro 2
Upstage AI
Solar Pro 2 is Upstage’s latest frontier‑scale large language model, designed to power complex tasks and agent‑like workflows across domains such as finance, healthcare, and legal. Packaged in a compact 31 billion‑parameter architecture, it delivers top‑tier multilingual performance, especially in Korean, where it outperforms much larger models on benchmarks like Ko‑MMLU, Hae‑Rae, and Ko‑IFEval, while also excelling in English and Japanese. Beyond superior language understanding and generation, Solar Pro 2 offers next‑level intelligence through an advanced Reasoning Mode that significantly boosts multi‑step task accuracy on challenges ranging from general reasoning (MMLU, MMLU‑Pro, HumanEval) to complex mathematics (Math500, AIME) and software engineering (SWE‑Bench Agentless), achieving problem‑solving efficiency comparable to or exceeding that of models twice its size. Enhanced tool‑use capabilities enable the model to interact seamlessly with external APIs and data sources.Starting Price: $0.1 per 1M tokens