Snowflake
Snowflake is a comprehensive AI Data Cloud platform designed to eliminate data silos and simplify data architectures, enabling organizations to get more value from their data. The platform offers interoperable storage that provides near-infinite scale and access to diverse data sources, both inside and outside Snowflake. Its elastic compute engine delivers high performance for any number of users, workloads, and data volumes with seamless scalability. Snowflake’s Cortex AI accelerates enterprise AI by providing secure access to leading large language models (LLMs) and data chat services. The platform’s cloud services automate complex resource management, ensuring reliability and cost efficiency. Trusted by over 11,000 global customers across industries, Snowflake helps businesses collaborate on data, build data applications, and maintain a competitive edge.
Learn more
Intel Tiber AI Studio
Intel® Tiber™ AI Studio is a comprehensive machine learning operating system that unifies and simplifies the AI development process. The platform supports a wide range of AI workloads, providing a hybrid and multi-cloud infrastructure that accelerates ML pipeline development, model training, and deployment. With its native Kubernetes orchestration and meta-scheduler, Tiber™ AI Studio offers complete flexibility in managing on-prem and cloud resources. Its scalable MLOps solution enables data scientists to easily experiment, collaborate, and automate their ML workflows while ensuring efficient and cost-effective utilization of resources.
Learn more
NVIDIA Magnum IO
NVIDIA Magnum IO is the architecture for parallel, intelligent data center I/O. It maximizes storage, network, and multi-node, multi-GPU communications for the world’s most important applications, using large language models, recommender systems, imaging, simulation, and scientific research. Magnum IO utilizes storage I/O, network I/O, in-network compute, and I/O management to simplify and speed up data movement, access, and management for multi-GPU, multi-node systems. It supports NVIDIA CUDA-X libraries and makes the best use of a range of NVIDIA GPU and networking hardware topologies to achieve optimal throughput and low latency. In multi-GPU, multi-node systems, slow CPU, single-thread performance is in the critical path of data access from local or remote storage devices. With storage I/O acceleration, the GPU bypasses the CPU and system memory, and accesses remote storage via 8x 200 Gb/s NICs, achieving up to 1.6 TB/s of raw storage bandwidth.
Learn more
Azure Data Science Virtual Machines
DSVMs are Azure Virtual Machine images, pre-installed, configured and tested with several popular tools that are commonly used for data analytics, machine learning and AI training. Consistent setup across team, promote sharing and collaboration, Azure scale and management, Near-Zero Setup, full cloud-based desktop for data science. Quick, Low friction startup for one to many classroom scenarios and online courses. Ability to run analytics on all Azure hardware configurations with vertical and horizontal scaling. Pay only for what you use, when you use it. Readily available GPU clusters with Deep Learning tools already pre-configured. Examples, templates and sample notebooks built or tested by Microsoft are provided on the VMs to enable easy onboarding to the various tools and capabilities such as Neural Networks (PYTorch, Tensorflow, etc.), Data Wrangling, R, Python, Julia, and SQL Server.
Learn more