Alternatives to NVIDIA RAPIDS
Compare NVIDIA RAPIDS alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to NVIDIA RAPIDS in 2025. Compare features, ratings, user reviews, pricing, and more from NVIDIA RAPIDS competitors and alternatives in order to make an informed decision for your business.
-
1
Vertex AI
Google
Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case. Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection. Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex. -
2
Teradata VantageCloud
Teradata
Teradata VantageCloud: The complete cloud analytics and data platform for AI. Teradata VantageCloud is an enterprise-grade, cloud-native data and analytics platform that unifies data management, advanced analytics, and AI/ML capabilities in a single environment. Designed for scalability and flexibility, VantageCloud supports multi-cloud and hybrid deployments, enabling organizations to manage structured and semi-structured data across AWS, Azure, Google Cloud, and on-premises systems. It offers full ANSI SQL support, integrates with open-source tools like Python and R, and provides built-in governance for secure, trusted AI. VantageCloud empowers users to run complex queries, build data pipelines, and operationalize machine learning models—all while maintaining interoperability with modern data ecosystems. -
3
Snowflake
Snowflake
Snowflake is a comprehensive AI Data Cloud platform designed to eliminate data silos and simplify data architectures, enabling organizations to get more value from their data. The platform offers interoperable storage that provides near-infinite scale and access to diverse data sources, both inside and outside Snowflake. Its elastic compute engine delivers high performance for any number of users, workloads, and data volumes with seamless scalability. Snowflake’s Cortex AI accelerates enterprise AI by providing secure access to leading large language models (LLMs) and data chat services. The platform’s cloud services automate complex resource management, ensuring reliability and cost efficiency. Trusted by over 11,000 global customers across industries, Snowflake helps businesses collaborate on data, build data applications, and maintain a competitive edge.Starting Price: $2 compute/month -
4
NVIDIA Magnum IO
NVIDIA
NVIDIA Magnum IO is the architecture for parallel, intelligent data center I/O. It maximizes storage, network, and multi-node, multi-GPU communications for the world’s most important applications, using large language models, recommender systems, imaging, simulation, and scientific research. Magnum IO utilizes storage I/O, network I/O, in-network compute, and I/O management to simplify and speed up data movement, access, and management for multi-GPU, multi-node systems. It supports NVIDIA CUDA-X libraries and makes the best use of a range of NVIDIA GPU and networking hardware topologies to achieve optimal throughput and low latency. In multi-GPU, multi-node systems, slow CPU, single-thread performance is in the critical path of data access from local or remote storage devices. With storage I/O acceleration, the GPU bypasses the CPU and system memory, and accesses remote storage via 8x 200 Gb/s NICs, achieving up to 1.6 TB/s of raw storage bandwidth. -
5
Cloudera Data Science Workbench
Cloudera
Accelerate machine learning from research to production with a consistent experience built for your traditional platform. With Python, R, and Scala directly in the web browser, Cloudera Data Science Workbench (CDSW) delivers a self-service experience data scientists will love. Download and experiment with the latest libraries and frameworks in customizable project environments that work just like your laptop. Cloudera Data Science Workbench provides connectivity not only to CDH and HDP but also to the systems your data science teams rely on for analysis. Cloudera Data Science Workbench lets data scientists manage their own analytics pipelines, including built-in scheduling, monitoring, and email alerting. Quickly develop and prototype new machine learning projects and easily deploy them to production. -
6
Azure Data Science Virtual Machines
Microsoft
DSVMs are Azure Virtual Machine images, pre-installed, configured and tested with several popular tools that are commonly used for data analytics, machine learning and AI training. Consistent setup across team, promote sharing and collaboration, Azure scale and management, Near-Zero Setup, full cloud-based desktop for data science. Quick, Low friction startup for one to many classroom scenarios and online courses. Ability to run analytics on all Azure hardware configurations with vertical and horizontal scaling. Pay only for what you use, when you use it. Readily available GPU clusters with Deep Learning tools already pre-configured. Examples, templates and sample notebooks built or tested by Microsoft are provided on the VMs to enable easy onboarding to the various tools and capabilities such as Neural Networks (PYTorch, Tensorflow, etc.), Data Wrangling, R, Python, Julia, and SQL Server.Starting Price: $0.005 -
7
Intel Tiber AI Studio
Intel
Intel® Tiber™ AI Studio is a comprehensive machine learning operating system that unifies and simplifies the AI development process. The platform supports a wide range of AI workloads, providing a hybrid and multi-cloud infrastructure that accelerates ML pipeline development, model training, and deployment. With its native Kubernetes orchestration and meta-scheduler, Tiber™ AI Studio offers complete flexibility in managing on-prem and cloud resources. Its scalable MLOps solution enables data scientists to easily experiment, collaborate, and automate their ML workflows while ensuring efficient and cost-effective utilization of resources. -
8
NVIDIA Brev
NVIDIA
NVIDIA Brev is a cloud-based platform that provides instant access to fully configured GPU environments optimized for AI and machine learning development. Its Launchables feature offers prebuilt, customizable compute setups that let developers start projects quickly without complex setup or configuration. Users can create Launchables by specifying GPU resources, Docker images, and project files, then share them easily with collaborators. The platform also offers prebuilt Launchables featuring the latest AI frameworks, microservices, and NVIDIA Blueprints to jumpstart development. NVIDIA Brev provides a seamless GPU sandbox with support for CUDA, Python, and Jupyter Lab accessible via browser or CLI. This enables developers to fine-tune, train, and deploy AI models with minimal friction and maximum flexibility.Starting Price: $0.04 per hour -
9
NVIDIA GPU-Optimized AMI
Amazon
The NVIDIA GPU-Optimized AMI is a virtual machine image for accelerating your GPU accelerated Machine Learning, Deep Learning, Data Science and HPC workloads. Using this AMI, you can spin up a GPU-accelerated EC2 VM instance in minutes with a pre-installed Ubuntu OS, GPU driver, Docker and NVIDIA container toolkit. This AMI provides easy access to NVIDIA's NGC Catalog, a hub for GPU-optimized software, for pulling & running performance-tuned, tested, and NVIDIA certified docker containers. The NGC catalog provides free access to containerized AI, Data Science, and HPC applications, pre-trained models, AI SDKs and other resources to enable data scientists, developers, and researchers to focus on building and deploying solutions. This GPU-optimized AMI is free with an option to purchase enterprise support offered through NVIDIA AI Enterprise. For how to get support for this AMI, scroll down to 'Support Information'Starting Price: $3.06 per hour -
10
NVIDIA AI Enterprise
NVIDIA
The software layer of the NVIDIA AI platform, NVIDIA AI Enterprise accelerates the data science pipeline and streamlines development and deployment of production AI including generative AI, computer vision, speech AI and more. With over 50 frameworks, pretrained models and development tools, NVIDIA AI Enterprise is designed to accelerate enterprises to the leading edge of AI, while also simplifying AI to make it accessible to every enterprise. The adoption of artificial intelligence and machine learning has gone mainstream, and is core to nearly every company’s competitive strategy. One of the toughest challenges for enterprises is the struggle with siloed infrastructure across the cloud and on-premises data centers. AI requires their environments to be managed as a common platform, instead of islands of compute. -
11
dotData
dotData
dotData frees your business to focus on the results of your AI and machine learning applications, not the headaches of the data science process by automating the full data science life-cycle. Deploy full-cycle AI & ML pipeline in minutes, update in real-time with continuous deployment. Accelerate data science projects from months to days with feature engineering automation. Discover the unknown unknowns of your business automatically with data science automation. The process of using data science to develop and deploy accurate machine learning and AI models is cumbersome, time-consuming, labor-intensive, and interdisciplinary. Automate the most time-consuming and repetitive tasks that are the bane of data science work and shorten AI development times from months to days. -
12
CUDA
NVIDIA
CUDA® is a parallel computing platform and programming model developed by NVIDIA for general computing on graphical processing units (GPUs). With CUDA, developers are able to dramatically speed up computing applications by harnessing the power of GPUs. In GPU-accelerated applications, the sequential part of the workload runs on the CPU – which is optimized for single-threaded performance – while the compute intensive portion of the application runs on thousands of GPU cores in parallel. When using CUDA, developers program in popular languages such as C, C++, Fortran, Python and MATLAB and express parallelism through extensions in the form of a few basic keywords. The CUDA Toolkit from NVIDIA provides everything you need to develop GPU-accelerated applications. The CUDA Toolkit includes GPU-accelerated libraries, a compiler, development tools and the CUDA runtime.Starting Price: Free -
13
NVIDIA Isaac
NVIDIA
NVIDIA Isaac is an AI robot development platform that comprises NVIDIA CUDA-accelerated libraries, application frameworks, and AI models to expedite the creation of AI robots, including autonomous mobile robots, robotic arms, and humanoids. The platform features NVIDIA Isaac ROS, a collection of CUDA-accelerated computing packages and AI models built on the open source ROS 2 framework, designed to streamline the development of advanced AI robotics applications. Isaac Manipulator, built on Isaac ROS, enables the development of AI-powered robotic arms that can seamlessly perceive, understand, and interact with their environments. Isaac Perceptor facilitates the rapid development of advanced AMRs capable of operating in unstructured environments like warehouses or factories. For humanoid robotics, NVIDIA Isaac GR00T serves as a research initiative and development platform for general-purpose robot foundation models and data pipelines. -
14
JarvisLabs.ai
JarvisLabs.ai
We have set up all the infrastructure, computing, and software (Cuda, Frameworks) required for you to train and deploy your favorite deep-learning models. You can spin up GPU/CPU-powered instances directly from your browser or automate it through our Python API.Starting Price: $1,440 per month -
15
NVIDIA NGC
NVIDIA
NVIDIA GPU Cloud (NGC) is a GPU-accelerated cloud platform optimized for deep learning and scientific computing. NGC manages a catalog of fully integrated and optimized deep learning framework containers that take full advantage of NVIDIA GPUs in both single GPU and multi-GPU configurations. NVIDIA train, adapt, and optimize (TAO) is an AI-model-adaptation platform that simplifies and accelerates the creation of enterprise AI applications and services. By fine-tuning pre-trained models with custom data through a UI-based, guided workflow, enterprises can produce highly accurate models in hours rather than months, eliminating the need for large training runs and deep AI expertise. Looking to get started with containers and models on NGC? This is the place to start. Private Registries from NGC allow you to secure, manage, and deploy your own assets to accelerate your journey to AI. -
16
Positron
Posit PBC
Positron is a next-generation, free, open source available integrated development environment for data science, built to support both Python and R in one unified workflow. It enables data professionals to move from exploration to production by offering interactive consoles, notebook support, variables and plot panes, and built-in previews of apps alongside code, all without needing extensive configuration. The IDE includes AI-assisted tools like the Positron Assistant and Databot agent to help write or refine code, perform exploratory analysis, and accelerate development. It offers features like a dedicated Data Explorer for viewing dataframes, a connections pane for databases, a variables pane, a plot pane, and seamless switch between R and Python with full support for notebooks, scripts, and visual dashboards. With version control, extensions support, and deep integration with other tools in the Posit Software ecosystem.Starting Price: Free -
17
Mojo
Modular
Mojo 🔥 — a new programming language for all AI developers. Mojo combines the usability of Python with the performance of C, unlocking unparalleled programmability of AI hardware and extensibility of AI models. Write Python or scale all the way down to the metal. Program the multitude of low-level AI hardware. No C++ or CUDA required. Utilize the full power of the hardware, including multiple cores, vector units, and exotic accelerator units, with the world's most advanced compiler and heterogenous runtime. Achieve performance on par with C++ and CUDA without the complexity.Starting Price: Free -
18
Key Ward
Key Ward
Extract, transform, manage, & process CAD, FE, CFD, and test data effortlessly. Create automatic data pipelines for machine learning, ROM, & 3D deep learning. Removing data science barriers without coding. Key Ward's platform is the first end-to-end engineering no-code solution that redefines how engineers interact with their data, experimental & CAx. Through leveraging engineering data intelligence, our software enables engineers to easily handle their multi-source data, extract direct value with our built-in advanced analytics tools, and custom-build their machine and deep learning models, all under one platform, all with a few clicks. Automatically centralize, update, extract, sort, clean, and prepare your multi-source data for analysis, machine learning, and/or deep learning. Use our advanced analytics tools on your experimental & simulation data to correlate, find dependencies, and identify patterns.Starting Price: €9,000 per year -
19
Provision a VM quickly with everything you need to get your deep learning project started on Google Cloud. Deep Learning VM Image makes it easy and fast to instantiate a VM image containing the most popular AI frameworks on a Google Compute Engine instance without worrying about software compatibility. You can launch Compute Engine instances pre-installed with TensorFlow, PyTorch, scikit-learn, and more. You can also easily add Cloud GPU and Cloud TPU support. Deep Learning VM Image supports the most popular and latest machine learning frameworks, like TensorFlow and PyTorch. To accelerate your model training and deployment, Deep Learning VM Images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers and the Intel® Math Kernel Library. Get started immediately with all the required frameworks, libraries, and drivers pre-installed and tested for compatibility. Deep Learning VM Image delivers a seamless notebook experience with integrated support for JupyterLab.
-
20
NVIDIA NIM
NVIDIA
Explore the latest optimized AI models, connect AI agents to data with NVIDIA NeMo, and deploy anywhere with NVIDIA NIM microservices. NVIDIA NIM is a set of easy-to-use inference microservices that facilitate the deployment of foundation models across any cloud or data center, ensuring data security and streamlined AI integration. Additionally, NVIDIA AI provides access to the Deep Learning Institute (DLI), offering technical training to gain in-demand skills, hands-on experience, and expert knowledge in AI, data science, and accelerated computing. AI models generate responses and outputs based on complex algorithms and machine learning techniques, and those responses or outputs may be inaccurate, harmful, biased, or indecent. By testing this model, you assume the risk of any harm caused by any response or output of the model. Please do not upload any confidential information or personal data unless expressly permitted. Your use is logged for security purposes. -
21
Metaflow
Metaflow
Successful data science projects are delivered by data scientists who can build, improve, and operate end-to-end workflows independently, focusing more on data science, less on engineering. Use Metaflow with your favorite data science libraries, such as Tensorflow or SciKit Learn, and write your models in idiomatic Python code with not much new to learn. Metaflow also supports the R language. Metaflow helps you design your workflow, run it at scale, and deploy it to production. It versions and tracks all your experiments and data automatically. It allows you to inspect results easily in notebooks. Metaflow comes packaged with the tutorials, so getting started is easy. You can make copies of all the tutorials in your current directory using the metaflow command line interface. -
22
Cegal Prizm
Cegal
Cegal Prizm is a modular solution designed to allow easy integration of data from different geo-applications, data sources and platforms into a Python environment. The modules allow you to combine geo-data sources for advanced analysis, visualization, data-science workflows, and machine-learning techniques. You can begin to solve problems that were not previously possible with legacy applications. Integrate modern Python technologies to extend, accelerate and augment standard workflows; create and securely distribute customized code, services and technology to a user community for consumption. Connect into the E&P software platform Petrel, OSDU, and other third-party applications and domains to access and retrieve energy data. Seamlessly transfer data locally or across hybrid and cloud deployments to a common Python environment to generate more insight and value. Prizm allows you to enrich datasets with additional application metadata to add more value and context to your analysis. -
23
Build, run and manage AI models, and optimize decisions at scale across any cloud. IBM Watson Studio empowers you to operationalize AI anywhere as part of IBM Cloud Pak® for Data, the IBM data and AI platform. Unite teams, simplify AI lifecycle management and accelerate time to value with an open, flexible multicloud architecture. Automate AI lifecycles with ModelOps pipelines. Speed data science development with AutoAI. Prepare and build models visually and programmatically. Deploy and run models through one-click integration. Promote AI governance with fair, explainable AI. Drive better business outcomes by optimizing decisions. Use open source frameworks like PyTorch, TensorFlow and scikit-learn. Bring together the development tools including popular IDEs, Jupyter notebooks, JupterLab and CLIs — or languages such as Python, R and Scala. IBM Watson Studio helps you build and scale AI with trust and transparency by automating AI lifecycle management.
-
24
Dataiku
Dataiku
Dataiku is an advanced data science and machine learning platform designed to enable teams to build, deploy, and manage AI and analytics projects at scale. It empowers users, from data scientists to business analysts, to collaboratively create data pipelines, develop machine learning models, and prepare data using both visual and coding interfaces. Dataiku supports the entire AI lifecycle, offering tools for data preparation, model training, deployment, and monitoring. The platform also includes integrations for advanced capabilities like generative AI, helping organizations innovate and deploy AI solutions across industries. -
25
NVIDIA HPC SDK
NVIDIA
The NVIDIA HPC Software Development Kit (SDK) includes the proven compilers, libraries and software tools essential to maximizing developer productivity and the performance and portability of HPC applications. The NVIDIA HPC SDK C, C++, and Fortran compilers support GPU acceleration of HPC modeling and simulation applications with standard C++ and Fortran, OpenACC® directives, and CUDA®. GPU-accelerated math libraries maximize performance on common HPC algorithms, and optimized communications libraries enable standards-based multi-GPU and scalable systems programming. Performance profiling and debugging tools simplify porting and optimization of HPC applications, and containerization tools enable easy deployment on-premises or in the cloud. With support for NVIDIA GPUs and Arm, OpenPOWER, or x86-64 CPUs running Linux, the HPC SDK provides the tools you need to build NVIDIA GPU-accelerated HPC applications. -
26
NVIDIA Merlin
NVIDIA
NVIDIA Merlin empowers data scientists, machine learning engineers, and researchers to build high-performing recommenders at scale. Merlin includes libraries, methods, and tools that streamline the building of recommenders by addressing common preprocessing, feature engineering, training, inference, and deploying to production challenges. Merlin components and capabilities are optimized to support the retrieval, filtering, scoring, and ordering of hundreds of terabytes of data, all accessible through easy-to-use APIs. With Merlin, better predictions, increased click-through rates, and faster deployment to production are within reach. NVIDIA Merlin, as part of NVIDIA AI, advances our commitment to supporting innovative practitioners doing their best work. As an end-to-end solution, NVIDIA Merlin components are designed to be interoperable within existing recommender workflows that utilize data science, and machine learning (ML). -
27
Google Colab
Google
Google Colab is a free, hosted Jupyter Notebook service that provides cloud-based environments for machine learning, data science, and educational purposes. It offers no-setup, easy access to computational resources such as GPUs and TPUs, making it ideal for users working with data-intensive projects. Colab allows users to run Python code in an interactive, notebook-style environment, share and collaborate on projects, and access extensive pre-built resources for efficient experimentation and learning. Colab also now offers a Data Science Agent automating analysis, from understanding the data to delivering insights in a working Colab notebook (Sequences shortened. Results for illustrative purposes. Data Science Agent may make mistakes.) -
28
Azure Machine Learning
Microsoft
Accelerate the end-to-end machine learning lifecycle. Empower developers and data scientists with a wide range of productive experiences for building, training, and deploying machine learning models faster. Accelerate time to market and foster team collaboration with industry-leading MLOps—DevOps for machine learning. Innovate on a secure, trusted platform, designed for responsible ML. Productivity for all skill levels, with code-first and drag-and-drop designer, and automated machine learning. Robust MLOps capabilities that integrate with existing DevOps processes and help manage the complete ML lifecycle. Responsible ML capabilities – understand models with interpretability and fairness, protect data with differential privacy and confidential computing, and control the ML lifecycle with audit trials and datasheets. Best-in-class support for open-source frameworks and languages including MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R. -
29
Daft
Daft
Daft is a framework for ETL, analytics and ML/AI at scale. Its familiar Python dataframe API is built to outperform Spark in performance and ease of use. Daft plugs directly into your ML/AI stack through efficient zero-copy integrations with essential Python libraries such as Pytorch and Ray. It also allows requesting GPUs as a resource for running models. Daft runs locally with a lightweight multithreaded backend. When your local machine is no longer sufficient, it scales seamlessly to run out-of-core on a distributed cluster. Daft can handle User-Defined Functions (UDFs) in columns, allowing you to apply complex expressions and operations to Python objects with the full flexibility required for ML/AI. Daft runs locally with a lightweight multithreaded backend. When your local machine is no longer sufficient, it scales seamlessly to run out-of-core on a distributed cluster. -
30
ZinkML
ZinkML Technologies
ZinkML is a zero-code data science platform designed to address the challenges faced by organizations in leveraging data effectively. By providing a visual and intuitive interface, it eliminates the need for extensive coding expertise, making data science accessible to a broader range of users. ZinkML streamlines the entire data science lifecycle, from data ingestion and preparation to model building, deployment, and monitoring. Users can drag-and-drop components to create complex data pipelines, explore data visually, and build predictive models without writing a single line of code. The platform also offers automated feature engineering, model selection, and hyperparameter tuning, accelerating the model development process. Moreover, ZinkML provides robust collaboration features, enabling teams to work together seamlessly on data science projects. By democratizing data science, we empower companies to extract maximum value from their data and drive better decision-making. -
31
MLJAR Studio
MLJAR
It's a desktop app with Jupyter Notebook and Python built in, installed with just one click. It includes interactive code snippets and an AI assistant to make coding faster and easier, perfect for data science projects. We manually hand crafted over 100 interactive code recipes that you can use in your Data Science projects. Code recipes detect packages available in the current environment. Install needed modules with 1-click, literally. You can create and interact with all variables available in your Python session. Interactive recipes speed-up your work. AI Assistant has access to your current Python session, variables and modules. Broad context makes it smart. Our AI Assistant was designed to solve data problems with Python programming language. It can help you with plots, data loading, data wrangling, Machine Learning and more. Use AI to quickly solve issues with code, just click Fix button. The AI assistant will analyze the error and propose the solution.Starting Price: $20 per month -
32
Options for every business to train deep learning and machine learning models cost-effectively. AI accelerators for every use case, from low-cost inference to high-performance training. Simple to get started with a range of services for development and deployment. Tensor Processing Units (TPUs) are custom-built ASIC to train and execute deep neural networks. Train and run more powerful and accurate models cost-effectively with faster speed and scale. A range of NVIDIA GPUs to help with cost-effective inference or scale-up or scale-out training. Leverage RAPID and Spark with GPUs to execute deep learning. Run GPU workloads on Google Cloud where you have access to industry-leading storage, networking, and data analytics technologies. Access CPU platforms when you start a VM instance on Compute Engine. Compute Engine offers a range of both Intel and AMD processors for your VMs.
-
33
Skyportal
Skyportal
Skyportal is a GPU cloud platform built for AI engineers, offering 50% less cloud costs and 100% GPU performance. It provides a cost-effective GPU infrastructure for machine learning workloads, eliminating unpredictable cloud bills and hidden fees. Skyportal has seamlessly integrated Kubernetes, Slurm, PyTorch, TensorFlow, CUDA, cuDNN, and NVIDIA Drivers, fully optimized for Ubuntu 22.04 LTS and 24.04 LTS, allowing users to focus on innovating and scaling with ease. It offers high-performance NVIDIA H100 and H200 GPUs optimized specifically for ML/AI workloads, with instant scalability and 24/7 expert support from a team that understands ML workflows and optimization. Skyportal's transparent pricing and zero egress fees provide predictable costs for AI infrastructure. Users can share their AI/ML project requirements and goals, deploy models within the infrastructure using familiar tools and frameworks, and scale their infrastructure as needed.Starting Price: $2.40 per hour -
34
Darwin
SparkCognition
Darwin is an automated machine learning product that enables your data science and business analytics teams to move more quickly from data to meaningful results. Darwin helps organizations scale the adoption of data science across teams, and the implementation of machine learning applications across operations, becoming data-driven enterprises.Starting Price: $4000 -
35
NVIDIA Base Command
NVIDIA
NVIDIA Base Command™ is a software service for enterprise-class AI training that enables businesses and their data scientists to accelerate AI development. Part of the NVIDIA DGX™ platform, Base Command Platform provides centralized, hybrid control of AI training projects. It works with NVIDIA DGX Cloud and NVIDIA DGX SuperPOD. Base Command Platform, in combination with NVIDIA-accelerated AI infrastructure, provides a cloud-hosted solution for AI development, so users can avoid the overhead and pitfalls of deploying and running a do-it-yourself platform. Base Command Platform efficiently configures and manages AI workloads, delivers integrated dataset management, and executes them on right-sized resources ranging from a single GPU to large-scale, multi-node clusters in the cloud or on-premises. Because NVIDIA’s own engineers and researchers rely on it every day, the platform receives continuous software enhancements. -
36
Oracle Data Science
Oracle
A data science platform that improves productivity with unparalleled abilities. Build and evaluate higher-quality machine learning (ML) models. Increase business flexibility by putting enterprise-trusted data to work quickly and support data-driven business objectives with easier deployment of ML models. Using cloud-based platforms to discover new business insights. Building a machine learning model is an iterative process. In this ebook, we break down the process and describe how machine learning models are built. Explore notebooks and build or test machine learning algorithms. Try AutoML and see data science results. Build high-quality models faster and easier. Automated machine learning capabilities rapidly examine the data and recommend the optimal data features and best algorithms. Additionally, automated machine learning tunes the model and explains the model’s results. -
37
Kedro
Kedro
Kedro is the foundation for clean data science code. It borrows concepts from software engineering and applies them to machine-learning projects. A Kedro project provides scaffolding for complex data and machine-learning pipelines. You spend less time on tedious "plumbing" and focus instead on solving new problems. Kedro standardizes how data science code is created and ensures teams collaborate to solve problems easily. Make a seamless transition from development to production with exploratory code that you can transition to reproducible, maintainable, and modular experiments. A series of lightweight data connectors is used to save and load data across many different file formats and file systems.Starting Price: Free -
38
NVIDIA TensorRT
NVIDIA
NVIDIA TensorRT is an ecosystem of APIs for high-performance deep learning inference, encompassing an inference runtime and model optimizations that deliver low latency and high throughput for production applications. Built on the CUDA parallel programming model, TensorRT optimizes neural network models trained on all major frameworks, calibrating them for lower precision with high accuracy, and deploying them across hyperscale data centers, workstations, laptops, and edge devices. It employs techniques such as quantization, layer and tensor fusion, and kernel tuning on all types of NVIDIA GPUs, from edge devices to PCs to data centers. The ecosystem includes TensorRT-LLM, an open source library that accelerates and optimizes inference performance of recent large language models on the NVIDIA AI platform, enabling developers to experiment with new LLMs for high performance and quick customization through a simplified Python API.Starting Price: Free -
39
Build and solve complex optimization models to identify the best possible actions. IBM® ILOG® CPLEX® Optimization Studio uses decision optimization technology to optimize your business decisions, develop and deploy optimization models quickly, and create real-world applications that can significantly improve business outcomes. How? IBM ILOG CPLEX Optimization Studio is a prescriptive analytics solution that enables rapid development and deployment of decision optimization models using mathematical and constraint programming. It combines a fully featured integrated development environment that supports Optimization Programming Language (OPL) and the high-performance CPLEX and CP Optimizer solvers. It’s data science for your decisions. IBM Decision Optimization is also available within Cloud Pak for Data where you can combine optimization and machine learning within a unified environment, IBM Watson® Studio, that enables AI-infused optimization modeling capabilities.
-
40
Bitfount
Bitfount
Bitfount is a platform for distributed data science. We power deep data collaborations without data sharing. Distributed data science sends algorithms to data, instead of the other way around. Set up a federated privacy-preserving analytics and machine learning network in minutes, and let your team focus on insights and innovation instead of bureaucracy. Your data team has the skills to solve your biggest challenges and innovate, but they are held back by barriers to data access. Is complex data pipeline infrastructure messing with your plans? Are compliance processes taking too long? Bitfount has a better way to unleash your data experts. Connect siloed and multi-cloud datasets while preserving privacy and respecting commercial sensitivity. No expensive, time-consuming data lift-and-shift. Usage-based access controls to ensure teams only perform the analysis you want, on the data you want. Transfer management of access controls to the teams who control the data. -
41
IBM SPSS Modeler
IBM
IBM SPSS Modeler is a leading visual data science and machine learning (ML) solution designed to help enterprises accelerate time to value by speeding up operational tasks for data scientists. Organizations worldwide use it for data preparation and discovery, predictive analytics, model management and deployment, and ML to monetize data assets. IBM SPSS Modeler automatically transforms data into the best format for the most accurate predictive modeling. It now only takes a few clicks for you to analyze data, identify fixes, screen out fields and derive new attributes. Leverage IBM SPSS Modeler’s powerful graphics engine to bring your insights to life. The smart chart recommender finds the perfect chart for your data from among dozens of options, so you can share your insights quickly and easily using compelling visualizations. -
42
Oracle Machine Learning
Oracle
Machine learning uncovers hidden patterns and insights in enterprise data, generating new value for the business. Oracle Machine Learning accelerates the creation and deployment of machine learning models for data scientists using reduced data movement, AutoML technology, and simplified deployment. Increase data scientist and developer productivity and reduce their learning curve with familiar open source-based Apache Zeppelin notebook technology. Notebooks support SQL, PL/SQL, Python, and markdown interpreters for Oracle Autonomous Database so users can work with their language of choice when developing models. A no-code user interface supporting AutoML on Autonomous Database to improve both data scientist productivity and non-expert user access to powerful in-database algorithms for classification and regression. Data scientists gain integrated model deployment from the Oracle Machine Learning AutoML User Interface. -
43
Predictive Modeling with Machine Learning and Explainable AI. FICO® Analytics Workbench™ is an integrated suite of state-of-the-art analytic authoring tools that empowers companies to improve business decisions across the customer lifecycle. With it, data scientists can build superior decisioning capabilities using a wide range of predictive data modeling tools and algorithms, including the latest machine learning (ML) and explainable artificial intelligence (xAI) approaches. We enhance the best of open source data science and machine learning with innovative intellectual property from FICO to deliver world-class analytic capabilities to discover, combine, and operationalize predictive signals in data. Analytics Workbench is built on the leading FICO® Platform to allow new predictive models and strategies to be deployed into production with ease.
-
44
Solvuu
Solvuu
A data science platform for life scientists. Translate your microbiome research into practical applications. Bring novel, safe and effective products to market faster. Integrate the right set of data science and collaboration tools, and achieve rapid advances in cancer therapeutics. Accelerate research, enable innovation and create value by adopting effective digital technology solutions to improve crop productivity. Import your small and big data. Organize according to our templates, or define your own schema. Our format inference algorithm synthesizes parsing functions and lets you override if needed, without coding. Use our interactive import screens or CLI for bulk imports. Your data is not just bytes. Solvuu automatically computes relevant summary statistics and generates rich interactive visualizations. Explore and gain insights into your data immediately; slice and dice as needed. -
45
Zerve AI
Zerve AI
Merging the best of a notebook and an IDE into one integrated coding environment, experts can explore their data and write stable code at the same time with fully automated cloud infrastructure. Zerve’s data science development environment gives data science and ML teams a unified space to explore, collaborate, build, and deploy data science & AI projects like never before. Zerve offers true language interoperability, meaning that as well as being able to use Python, R, SQL, or Markdown all in the same canvas, users can connect these code blocks to each other. No more long-running code blocks or containers, with Zerve enjoying unlimited parallelization at any stage of the development journey. Analysis artifacts are automatically serialized, versioned, stored, and preserved for later use, meaning easily changing a step in the data flow without needing to rerun any preceding steps. Fine-grained selection of compute resources and extra memory for complex data transformation. -
46
Deeplearning4j
Deeplearning4j
DL4J takes advantage of the latest distributed computing frameworks including Apache Spark and Hadoop to accelerate training. On multi-GPUs, it is equal to Caffe in performance. The libraries are completely open-source, Apache 2.0, and maintained by the developer community and Konduit team. Deeplearning4j is written in Java and is compatible with any JVM language, such as Scala, Clojure, or Kotlin. The underlying computations are written in C, C++, and Cuda. Keras will serve as the Python API. Eclipse Deeplearning4j is the first commercial-grade, open-source, distributed deep-learning library written for Java and Scala. Integrated with Hadoop and Apache Spark, DL4J brings AI to business environments for use on distributed GPUs and CPUs. There are a lot of parameters to adjust when you're training a deep-learning network. We've done our best to explain them, so that Deeplearning4j can serve as a DIY tool for Java, Scala, Clojure, and Kotlin programmers. -
47
Anaconda
Anaconda
Empowering the enterprise to do real data science at speed and scale with a full-featured machine learning platform. Spend less time managing tools and infrastructure, so you can focus on building machine learning applications that move your business forward. Anaconda Enterprise takes the headache out of ML operations, puts open-source innovation at your fingertips, and provides the foundation for serious data science and machine learning production without locking you into specific models, templates, or workflows. Software developers and data scientists can work together with AE to build, test, debug, and deploy models using their preferred languages and tools. AE provides access to both notebooks and IDEs so developers and data scientists can work together more efficiently. They can also choose from example projects and preconfigured projects. AE projects are automatically containerized so they can be moved between environments with ease. -
48
Vertex AI Notebooks
Google
Vertex AI Notebooks is a fully managed, scalable solution from Google Cloud that accelerates machine learning (ML) development. It provides a seamless, interactive environment for data scientists and developers to explore data, prototype models, and collaborate in real-time. With integration into Google Cloud’s vast data and ML tools, Vertex AI Notebooks supports rapid prototyping, automated workflows, and deployment, making it easier to scale ML operations. The platform’s support for both Colab Enterprise and Vertex AI Workbench ensures a flexible and secure environment for diverse enterprise needs.Starting Price: $10 per GB -
49
Huawei Cloud ModelArts
Huawei Cloud
ModelArts is a comprehensive AI development platform provided by Huawei Cloud, designed to streamline the entire AI workflow for developers and data scientists. It offers a full-lifecycle toolchain that includes data preprocessing, semi-automated data labeling, distributed training, automated model building, and flexible deployment options across cloud, edge, and on-premises environments. It supports popular open source AI frameworks such as TensorFlow, PyTorch, and MindSpore, and allows for the integration of custom algorithms tailored to specific needs. ModelArts features an end-to-end development pipeline that enhances collaboration across DataOps, MLOps, and DevOps, boosting development efficiency by up to 50%. It provides cost-effective AI computing resources with diverse specifications, enabling large-scale distributed training and inference acceleration. -
50
RapidMiner
Altair
RapidMiner is reinventing enterprise AI so that anyone has the power to positively shape the future. We’re doing this by enabling ‘data loving’ people of all skill levels, across the enterprise, to rapidly create and operate AI solutions to drive immediate business impact. We offer an end-to-end platform that unifies data prep, machine learning, and model operations with a user experience that provides depth for data scientists and simplifies complex tasks for everyone else. Our Center of Excellence methodology and the RapidMiner Academy ensures customers are successful, no matter their experience or resource levels. Simplify operations, no matter how complex models are, or how they were created. Deploy, evaluate, compare, monitor, manage and swap any model. Solve your business issues faster with sharper insights and predictive models, no one understands the business problem like you do.Starting Price: Free