Alternatives to HunyuanOCR

Compare HunyuanOCR alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to HunyuanOCR in 2026. Compare features, ratings, user reviews, pricing, and more from HunyuanOCR competitors and alternatives in order to make an informed decision for your business.

  • 1
    Google Cloud Vision AI
    Derive insights from your images in the cloud or at the edge with AutoML Vision or use pre-trained Vision API models to detect emotion, understand text, and more. Google Cloud offers two computer vision products that use machine learning to help you understand your images with industry-leading prediction accuracy. Automate the training of your own custom machine learning models. Simply upload images and train custom image models with AutoML Vision’s easy-to-use graphical interface; optimize your models for accuracy, latency, and size; and export them to your application in the cloud, or to an array of devices at the edge. Google Cloud’s Vision API offers powerful pre-trained machine learning models through REST and RPC APIs. Assign labels to images and quickly classify them into millions of predefined categories. Detect objects and faces, read printed and handwritten text, and build valuable metadata into your image catalog.
  • 2
    Hunyuan-Vision-1.5
    HunyuanVision is a cutting-edge vision-language model developed by Tencent’s Hunyuan team. It uses a mamba-transformer hybrid architecture to deliver strong performance and efficient inference in multimodal reasoning tasks. The version Hunyuan-Vision-1.5 is designed for “thinking on images,” meaning it not only understands vision+language content, but can perform deeper reasoning that involves manipulating or reflecting on image inputs, such as cropping, zooming, pointing, box drawing, or drawing on the image to acquire additional knowledge. It supports a variety of vision tasks (image + video recognition, OCR, diagram understanding), visual reasoning, and even 3D spatial comprehension, all in a unified multilingual framework. The model is built to work seamlessly across languages and tasks and is intended to be open sourced (including checkpoints, technical report, inference support) to encourage the community to experiment and adopt.
  • 3
    HunyuanCustom
    HunyuanCustom is a multi-modal customized video generation framework that emphasizes subject consistency while supporting image, audio, video, and text conditions. Built upon HunyuanVideo, it introduces a text-image fusion module based on LLaVA for enhanced multi-modal understanding, along with an image ID enhancement module that leverages temporal concatenation to reinforce identity features across frames. To enable audio- and video-conditioned generation, it further proposes modality-specific condition injection mechanisms, an AudioNet module that achieves hierarchical alignment via spatial cross-attention, and a video-driven injection module that integrates latent-compressed conditional video through a patchify-based feature-alignment network. Extensive experiments on single- and multi-subject scenarios demonstrate that HunyuanCustom significantly outperforms state-of-the-art open and closed source methods in terms of ID consistency, realism, and text-video alignment.
  • 4
    Hunyuan T1

    Hunyuan T1

    Tencent

    ​​Hunyuan T1 is Tencent's deep-thinking AI model, now fully open to all users through the Tencent Yuanbao platform. This model excels in understanding multiple dimensions and potential logical relationships, making it suitable for handling complex tasks. Users can experience various AI models on the platform, including DeepSeek-R1 and Tencent Hunyuan Turbo. The official version of the Tencent Hunyuan T1 model will also be launched soon, providing external API access and other services. Built upon Tencent's Hunyuan large language model, Yuanbao excels in Chinese language understanding, logical reasoning, and task execution. It offers AI-based search, summaries, and writing capabilities, enabling users to analyze documents and engage in prompt-based interactions.
  • 5
    Qwen3-VL

    Qwen3-VL

    Alibaba

    Qwen3-VL is the newest vision-language model in the Qwen family (by Alibaba Cloud), designed to fuse powerful text understanding/generation with advanced visual and video comprehension into one unified multimodal model. It accepts inputs in mixed modalities, text, images, and video, and handles long, interleaved contexts natively (up to 256 K tokens, with extensibility beyond). Qwen3-VL delivers major advances in spatial reasoning, visual perception, and multimodal reasoning; the model architecture incorporates several innovations such as Interleaved-MRoPE (for robust spatio-temporal positional encoding), DeepStack (to leverage multi-level features from its Vision Transformer backbone for refined image-text alignment), and text–timestamp alignment (for precise reasoning over video content and temporal events). These upgrades enable Qwen3-VL to interpret complex scenes, follow dynamic video sequences, read and reason about visual layouts.
  • 6
    GLM-4.1V

    GLM-4.1V

    Zhipu AI

    GLM-4.1V is a vision-language model, providing a powerful, compact multimodal model designed for reasoning and perception across images, text, and documents. The 9-billion-parameter variant (GLM-4.1V-9B-Thinking) is built on the GLM-4-9B foundation and enhanced through a specialized training paradigm using Reinforcement Learning with Curriculum Sampling (RLCS). It supports a 64k-token context window and accepts high-resolution inputs (up to 4K images, any aspect ratio), enabling it to handle complex tasks such as optical character recognition, image captioning, chart and document parsing, video and scene understanding, GUI-agent workflows (e.g., interpreting screenshots, recognizing UI elements), and general vision-language reasoning. In benchmark evaluations at the 10 B-parameter scale, GLM-4.1V-9B-Thinking achieved top performance on 23 of 28 tasks.
  • 7
    GLM-4.5V-Flash
    GLM-4.5V-Flash is an open source vision-language model, designed to bring strong multimodal capabilities into a lightweight, deployable package. It supports image, video, document, and GUI inputs, enabling tasks such as scene understanding, chart and document parsing, screen reading, and multi-image analysis. Compared to larger models in the series, GLM-4.5V-Flash offers a compact footprint while retaining core VLM capabilities like visual reasoning, video understanding, GUI task handling, and complex document parsing. It can serve in “GUI agent” workflows, meaning it can interpret screenshots or desktop captures, recognize icons or UI elements, and assist with automated desktop or web-based tasks. Although it forgoes some of the largest-model performance gains, GLM-4.5V-Flash remains versatile for real-world multimodal tasks where efficiency, lower resource usage, and broad modality support are prioritized.
  • 8
    GLM-4.6V

    GLM-4.6V

    Zhipu AI

    GLM-4.6V is a state-of-the-art open source multimodal vision-language model from the Z.ai (GLM-V) family designed for reasoning, perception, and action. It ships in two variants: a full-scale version (106B parameters) for cloud or high-performance clusters, and a lightweight “Flash” variant (9B) optimized for local deployment or low-latency use. GLM-4.6V supports a native context window of up to 128K tokens during training, enabling it to process very long documents or multimodal inputs. Crucially, it integrates native Function Calling, meaning the model can take images, screenshots, documents, or other visual media as input directly (without manual text conversion), reason about them, and trigger tool calls, bridging “visual perception” with “executable action.” This enables a wide spectrum of capabilities; interleaved image-and-text content generation (for example, combining document understanding with text summarization or generation of image-annotated responses).
  • 9
    UI-TARS

    UI-TARS

    ByteDance

    UI-TARS is an advanced vision-language model designed for seamless interaction with graphical user interfaces (GUIs) by integrating perception, reasoning, grounding, and memory into a unified system. It processes multimodal inputs, such as text and images, to understand interfaces and execute tasks in real time without predefined workflows. Supporting desktop, mobile, and web platforms, UI-TARS automates complex, multi-step tasks using advanced reasoning and planning. Its use of large-scale datasets enhances generalization and robustness, making it a cutting-edge solution for GUI automation.
  • 10
    WaveSpeedAI

    WaveSpeedAI

    WaveSpeedAI

    WaveSpeedAI is a high-performance generative media platform built to dramatically accelerate image, video, and audio creation by combining cutting-edge multimodal models with an ultra-fast inference engine. It supports a wide array of creative workflows, from text-to-video and image-to-video to text-to-image, voice generation, and 3D asset creation, through a unified API designed for scale and speed. The platform integrates top-tier foundation models such as WAN 2.1/2.2, Seedream, FLUX, and HunyuanVideo, and provides streamlined access to a vast model library. Users benefit from blazing-fast generation times, real-time throughput, and enterprise-grade reliability while retaining high-quality output. WaveSpeedAI emphasises “fast, vast, efficient” performance; fast generation of creative assets, access to a wide-ranging set of state-of-the-art models, and cost-efficient execution without sacrificing quality.
  • 11
    Tencent Yuanbao
    Tencent Yuanbao is an AI-powered assistant that has quickly become popular in China, leveraging advanced large language models, including Tencent's proprietary Hunyuan model, and integrating with DeepSeek. The application excels in areas like Chinese language processing, logical reasoning, and efficient task execution. Yuanbao's popularity has surged in recent months, even surpassing competitors such as DeepSeek to top the Apple App Store download charts in China. A key driver of its growth is its deep integration into the Tencent ecosystem, particularly within WeChat, further enhancing its accessibility and functionality. This rapid rise highlights Tencent's growing ambition in the competitive AI assistant market.
  • 12
    HunyuanVideo
    HunyuanVideo is an advanced AI-powered video generation model developed by Tencent, designed to seamlessly blend virtual and real elements, offering limitless creative possibilities. It delivers cinematic-quality videos with natural movements and precise expressions, capable of transitioning effortlessly between realistic and virtual styles. This technology overcomes the constraints of short dynamic images by presenting complete, fluid actions and rich semantic content, making it ideal for applications in advertising, film production, and other commercial industries.
  • 13
    VideoPoet
    VideoPoet is a simple modeling method that can convert any autoregressive language model or large language model (LLM) into a high-quality video generator. It contains a few simple components. An autoregressive language model learns across video, image, audio, and text modalities to autoregressively predict the next video or audio token in the sequence. A mixture of multimodal generative learning objectives are introduced into the LLM training framework, including text-to-video, text-to-image, image-to-video, video frame continuation, video inpainting and outpainting, video stylization, and video-to-audio. Furthermore, such tasks can be composed together for additional zero-shot capabilities. This simple recipe shows that language models can synthesize and edit videos with a high degree of temporal consistency.
  • 14
    NVIDIA Cosmos
    NVIDIA Cosmos is a developer-first platform of state-of-the-art generative World Foundation Models (WFMs), advanced video tokenizers, guardrails, and an accelerated data processing and curation pipeline designed to supercharge physical AI development. It enables developers working on autonomous vehicles, robotics, and video analytics AI agents to generate photorealistic, physics-aware synthetic video data, trained on an immense dataset including 20 million hours of real-world and simulated video, to rapidly simulate future scenarios, train world models, and fine‑tune custom behaviors. It includes three core WFM types; Cosmos Predict, capable of generating up to 30 seconds of continuous video from multimodal inputs; Cosmos Transfer, which adapts simulations across environments and lighting for versatile domain augmentation; and Cosmos Reason, a vision-language model that applies structured reasoning to interpret spatial-temporal data for planning and decision-making.
  • 15
    Hunyuan-TurboS
    Tencent's Hunyuan-TurboS is a next-generation AI model designed to offer rapid responses and outstanding performance in various domains such as knowledge, mathematics, and creative tasks. Unlike previous models that require "slow thinking," Hunyuan-TurboS enhances response speed, doubling word output speed and reducing first-word latency by 44%. Through innovative architecture, it provides superior performance while lowering deployment costs. This model combines fast thinking (intuition-based responses) with slow thinking (logical analysis), ensuring quicker, more accurate solutions across diverse scenarios. Hunyuan-TurboS excels in benchmarks, competing with leading models like GPT-4 and DeepSeek V3, making it a breakthrough in AI-driven performance.
  • 16
    Hunyuan3D 2.0
    Tencent Hunyuan 3D is an AI-powered platform developed by Tencent that specializes in generating 3D content. Leveraging advanced artificial intelligence technology, the platform allows users to create realistic and dynamic 3D models and animations efficiently. It is designed for industries such as gaming, virtual reality, and digital media, offering a streamlined solution for high-quality 3D asset creation.
  • 17
    Gemini 3 Pro
    Gemini 3 Pro is Google’s most advanced multimodal AI model, built for developers who want to bring ideas to life with intelligence, precision, and creativity. It delivers breakthrough performance across reasoning, coding, and multimodal understanding—surpassing Gemini 2.5 Pro in both speed and capability. The model excels in agentic workflows, enabling autonomous coding, debugging, and refactoring across entire projects with long-context awareness. With superior performance in image, video, and spatial reasoning, Gemini 3 Pro powers next-generation applications in development, robotics, XR, and document intelligence. Developers can access it through the Gemini API, Google AI Studio, or Vertex AI, integrating seamlessly into existing tools and IDEs. Whether generating code, analyzing visuals, or building interactive apps from a single prompt, Gemini 3 Pro represents the future of intelligent, multimodal AI development.
    Starting Price: $19.99/month
  • 18
    Qwen3-Omni

    Qwen3-Omni

    Alibaba

    Qwen3-Omni is a natively end-to-end multilingual omni-modal foundation model that processes text, images, audio, and video and delivers real-time streaming responses in text and natural speech. It uses a Thinker-Talker architecture with a Mixture-of-Experts (MoE) design, early text-first pretraining, and mixed multimodal training to support strong performance across all modalities without sacrificing text or image quality. The model supports 119 text languages, 19 speech input languages, and 10 speech output languages. It achieves state-of-the-art results: across 36 audio and audio-visual benchmarks, it hits open-source SOTA on 32 and overall SOTA on 22, outperforming or matching strong closed-source models such as Gemini-2.5 Pro and GPT-4o. To reduce latency, especially in audio/video streaming, Talker predicts discrete speech codecs via a multi-codebook scheme and replaces heavier diffusion approaches.
  • 19
    Nomic Embed
    Nomic Embed is a suite of open source, high-performance embedding models designed for various applications, including multilingual text, multimodal content, and code. The ecosystem includes models like Nomic Embed Text v2, which utilizes a Mixture-of-Experts (MoE) architecture to support over 100 languages with efficient inference using 305M active parameters. Nomic Embed Text v1.5 offers variable embedding dimensions (64 to 768) through Matryoshka Representation Learning, enabling developers to balance performance and storage needs. For multimodal applications, Nomic Embed Vision v1.5 aligns with the text models to provide a unified latent space for text and image data, facilitating seamless multimodal search. Additionally, Nomic Embed Code delivers state-of-the-art performance on code embedding tasks across multiple programming languages.
  • 20
    HunyuanVideo-Avatar

    HunyuanVideo-Avatar

    Tencent-Hunyuan

    HunyuanVideo‑Avatar supports animating any input avatar images to high‑dynamic, emotion‑controllable videos using simple audio conditions. It is a multimodal diffusion transformer (MM‑DiT)‑based model capable of generating dynamic, emotion‑controllable, multi‑character dialogue videos. It accepts multi‑style avatar inputs, photorealistic, cartoon, 3D‑rendered, anthropomorphic, at arbitrary scales from portrait to full body. Provides a character image injection module that ensures strong character consistency while enabling dynamic motion; an Audio Emotion Module (AEM) that extracts emotional cues from a reference image to enable fine‑grained emotion control over generated video; and a Face‑Aware Audio Adapter (FAA) that isolates audio influence to specific face regions via latent‑level masking, supporting independent audio‑driven animation in multi‑character scenarios.
  • 21
    Ministral 3

    Ministral 3

    Mistral AI

    Mistral 3 is the latest generation of open-weight AI models from Mistral AI, offering a full family of models, from small, edge-optimized versions to a flagship, large-scale multimodal model. The lineup includes three compact “Ministral 3” models (3B, 8B, and 14B parameters) designed for efficiency and deployment on constrained hardware (even laptops, drones, or edge devices), plus the powerful “Mistral Large 3,” a sparse mixture-of-experts model with 675 billion total parameters (41 billion active). The models support multimodal and multilingual tasks, not only text, but also image understanding, and have demonstrated best-in-class performance on general prompts, multilingual conversations, and multimodal inputs. The base and instruction-fine-tuned versions are released under the Apache 2.0 license, enabling broad customization and integration in enterprise and open source projects.
  • 22
    GLM-4.5V

    GLM-4.5V

    Zhipu AI

    GLM-4.5V builds on the GLM-4.5-Air foundation, using a Mixture-of-Experts (MoE) architecture with 106 billion total parameters and 12 billion activation parameters. It achieves state-of-the-art performance among open-source VLMs of similar scale across 42 public benchmarks, excelling in image, video, document, and GUI-based tasks. It supports a broad range of multimodal capabilities, including image reasoning (scene understanding, spatial recognition, multi-image analysis), video understanding (segmentation, event recognition), complex chart and long-document parsing, GUI-agent workflows (screen reading, icon recognition, desktop automation), and precise visual grounding (e.g., locating objects and returning bounding boxes). GLM-4.5V also introduces a “Thinking Mode” switch, allowing users to choose between fast responses or deeper reasoning when needed.
  • 23
    PaliGemma 2
    PaliGemma 2, the next evolution in tunable vision-language models, builds upon the performant Gemma 2 models, adding the power of vision and making it easier than ever to fine-tune for exceptional performance. With PaliGemma 2, these models can see, understand, and interact with visual input, opening up a world of new possibilities. It offers scalable performance with multiple model sizes (3B, 10B, 28B parameters) and resolutions (224px, 448px, 896px). PaliGemma 2 generates detailed, contextually relevant captions for images, going beyond simple object identification to describe actions, emotions, and the overall narrative of the scene. Our research demonstrates leading performance in chemical formula recognition, music score recognition, spatial reasoning, and chest X-ray report generation, as detailed in the technical report. Upgrading to PaliGemma 2 is a breeze for existing PaliGemma users.
  • 24
    LLaVA

    LLaVA

    LLaVA

    LLaVA (Large Language-and-Vision Assistant) is an innovative multimodal model that integrates a vision encoder with the Vicuna language model to facilitate comprehensive visual and language understanding. Through end-to-end training, LLaVA exhibits impressive chat capabilities, emulating the multimodal functionalities of models like GPT-4. Notably, LLaVA-1.5 has achieved state-of-the-art performance across 11 benchmarks, utilizing publicly available data and completing training in approximately one day on a single 8-A100 node, surpassing methods that rely on billion-scale datasets. The development of LLaVA involved the creation of a multimodal instruction-following dataset, generated using language-only GPT-4. This dataset comprises 158,000 unique language-image instruction-following samples, including conversations, detailed descriptions, and complex reasoning tasks. This data has been instrumental in training LLaVA to perform a wide array of visual and language tasks effectively.
  • 25
    Qwen2.5-VL

    Qwen2.5-VL

    Alibaba

    Qwen2.5-VL is the latest vision-language model from the Qwen series, representing a significant advancement over its predecessor, Qwen2-VL. This model excels in visual understanding, capable of recognizing a wide array of objects, including text, charts, icons, graphics, and layouts within images. It functions as a visual agent, capable of reasoning and dynamically directing tools, enabling applications such as computer and phone usage. Qwen2.5-VL can comprehend videos exceeding one hour in length and can pinpoint relevant segments within them. Additionally, it accurately localizes objects in images by generating bounding boxes or points and provides stable JSON outputs for coordinates and attributes. The model also supports structured outputs for data like scanned invoices, forms, and tables, benefiting sectors such as finance and commerce. Available in base and instruct versions across 3B, 7B, and 72B sizes, Qwen2.5-VL is accessible through platforms like Hugging Face and ModelScope.
  • 26
    Ray2

    Ray2

    Luma AI

    Ray2 is a large-scale video generative model capable of creating realistic visuals with natural, coherent motion. It has a strong understanding of text instructions and can take images and video as input. Ray2 exhibits advanced capabilities as a result of being trained on Luma’s new multi-modal architecture scaled to 10x compute of Ray1. Ray2 marks the beginning of a new generation of video models capable of producing fast coherent motion, ultra-realistic details, and logical event sequences. This increases the success rate of usable generations and makes videos generated by Ray2 substantially more production-ready. Text-to-video generation is available in Ray2 now, with image-to-video, video-to-video, and editing capabilities coming soon. Ray2 brings a whole new level of motion fidelity. Smooth, cinematic, and jaw-dropping, transform your vision into reality. Tell your story with stunning, cinematic visuals. Ray2 lets you craft breathtaking scenes with precise camera movements.
    Starting Price: $9.99 per month
  • 27
    Grok 4
    Grok 4 is the latest AI model from Elon Musk’s xAI, marking a significant advancement in AI reasoning and natural language understanding. Developed on the Colossus supercomputer, Grok 4 supports multimodal inputs including text and images, with plans to add video capabilities soon. It features enhanced precision in language tasks and has demonstrated superior performance in scientific reasoning and visual problem-solving compared to other leading AI models. Designed for developers, researchers, and technical users, Grok 4 offers powerful tools for complex tasks. The model incorporates improved moderation to address previous concerns about biased or problematic outputs. Grok 4 represents a major leap forward in AI’s ability to understand and generate human-like responses.
  • 28
    Hugging Face Transformers
    ​Transformers is a library of pretrained natural language processing, computer vision, audio, and multimodal models for inference and training. Use Transformers to train models on your data, build inference applications, and generate text with large language models. Explore the Hugging Face Hub today to find a model and use Transformers to help you get started right away.​ Simple and optimized inference class for many machine learning tasks like text generation, image segmentation, automatic speech recognition, document question answering, and more. A comprehensive trainer that supports features such as mixed precision, torch.compile, and FlashAttention for training and distributed training for PyTorch models.​ Fast text generation with large language models and vision language models. Every model is implemented from only three main classes (configuration, model, and preprocessor) and can be quickly used for inference or training.
    Starting Price: $9 per month
  • 29
    Synexa

    Synexa

    Synexa

    ​Synexa AI enables users to deploy AI models with a single line of code, offering a simple, fast, and stable solution. It supports various functionalities, including image and video generation, image restoration, image captioning, model fine-tuning, and speech generation. Synexa provides access to over 100 production-ready AI models, such as FLUX Pro, Ideogram v2, and Hunyuan Video, with new models added weekly and zero setup required. Synexa's optimized inference engine delivers up to 4x faster performance on diffusion models, achieving sub-second generation times with FLUX and other popular models. Developers can integrate AI capabilities in minutes using intuitive SDKs and comprehensive API documentation, with support for Python, JavaScript, and REST API. Synexa offers enterprise-grade GPU infrastructure with A100s and H100s across three continents, ensuring sub-100ms latency with smart routing and a 99.9% uptime guarantee.
    Starting Price: $0.0125 per image
  • 30
    Grok 4.1
    Grok 4.1 is an advanced AI model developed by Elon Musk’s xAI, designed to push the limits of reasoning and natural language understanding. Built on the powerful Colossus supercomputer, it processes multimodal inputs including text and images, with upcoming support for video. The model delivers exceptional accuracy in scientific, technical, and linguistic tasks. Its architecture enables complex reasoning and nuanced response generation that rivals the best AI systems in the world. Enhanced moderation ensures more responsible and unbiased outputs than earlier versions. Grok 4.1 is a breakthrough in creating AI that can think, interpret, and respond more like a human.
  • 31
    Llama 4 Scout
    Llama 4 Scout is a powerful 17 billion active parameter multimodal AI model that excels in both text and image processing. With an industry-leading context length of 10 million tokens, it outperforms its predecessors, including Llama 3, in tasks such as multi-document summarization and parsing large codebases. Llama 4 Scout is designed to handle complex reasoning tasks while maintaining high efficiency, making it perfect for use cases requiring long-context comprehension and image grounding. It offers cutting-edge performance in image-related tasks and is particularly well-suited for applications requiring both text and visual understanding.
  • 32
    Mistral Medium 3.1
    Mistral Medium 3.1 is the latest frontier-class multimodal foundation model released in August 2025, designed to deliver advanced reasoning, coding, and multimodal capabilities while dramatically reducing deployment complexity and costs. It builds on the highly efficient architecture of Mistral Medium 3, renowned for offering state-of-the-art performance at up to 8-times lower cost than leading large models, enhancing tone consistency, responsiveness, and accuracy across diverse tasks and modalities. The model supports deployment across hybrid environments, on-premises systems, and virtual private clouds, and it achieves competitive performance relative to high-end models such as Claude Sonnet 3.7, Llama 4 Maverick, and Cohere Command A. Ideal for professional and enterprise use cases, Mistral Medium 3.1 excels in coding, STEM reasoning, language understanding, and multimodal comprehension, while maintaining broad compatibility with custom workflows and infrastructure.
  • 33
    Gemini 3 Deep Think
    The most advanced model from Google DeepMind, Gemini 3, sets a new bar for model intelligence by delivering state-of-the-art reasoning and multimodal understanding across text, image, and video. It surpasses its predecessor on key AI benchmarks and excels at deeper problems such as scientific reasoning, complex coding, spatial logic, and visual-/video-based understanding. The new “Deep Think” mode pushes the boundaries even further, offering enhanced reasoning for very challenging tasks, outperforming Gemini 3 Pro on benchmarks like Humanity’s Last Exam and ARC-AGI. Gemini 3 is now available across Google’s ecosystem, enabling users to learn, build, and plan at new levels of sophistication. With context windows up to one million tokens, more granular media-processing options, and specialized configurations for tool use, the model brings better precision, depth, and flexibility for real-world workflows.
  • 34
    txtai

    txtai

    NeuML

    txtai is an all-in-one open source embeddings database designed for semantic search, large language model orchestration, and language model workflows. It unifies vector indexes (both sparse and dense), graph networks, and relational databases, providing a robust foundation for vector search and serving as a powerful knowledge source for LLM applications. With txtai, users can build autonomous agents, implement retrieval augmented generation processes, and develop multi-modal workflows. Key features include vector search with SQL support, object storage integration, topic modeling, graph analysis, and multimodal indexing capabilities. It supports the creation of embeddings for various data types, including text, documents, audio, images, and video. Additionally, txtai offers pipelines powered by language models that handle tasks such as LLM prompting, question-answering, labeling, transcription, translation, and summarization.
  • 35
    Amazon Nova Pro
    Amazon Nova Pro is a versatile, multimodal AI model designed for a wide range of complex tasks, offering an optimal combination of accuracy, speed, and cost efficiency. It excels in video summarization, Q&A, software development, and AI agent workflows that require executing multi-step processes. With advanced capabilities in text, image, and video understanding, Nova Pro supports tasks like mathematical reasoning and content generation, making it ideal for businesses looking to implement cutting-edge AI in their operations.
  • 36
    ModelMatch

    ModelMatch

    ModelMatch

    ​ModelMatch is an online platform that allows users to compare top open source vision-language models for image-understanding tasks without the need for coding. Users can upload up to four images and input specific prompts to receive detailed analyses from multiple models simultaneously. It evaluates models ranging from 1 billion to 12 billion parameters, all of which are open source with commercial licenses. For each model, ModelMatch provides a quality score (1-10) based on the model's performance for the given use case, processing time metrics, and real-time status updates during processing.
  • 37
    Qwen2.5

    Qwen2.5

    Alibaba

    Qwen2.5 is an advanced multimodal AI model designed to provide highly accurate and context-aware responses across a wide range of applications. It builds on the capabilities of its predecessors, integrating cutting-edge natural language understanding with enhanced reasoning, creativity, and multimodal processing. Qwen2.5 can seamlessly analyze and generate text, interpret images, and interact with complex data to deliver precise solutions in real time. Optimized for adaptability, it excels in personalized assistance, data analysis, creative content generation, and academic research, making it a versatile tool for professionals and everyday users alike. Its user-centric design emphasizes transparency, efficiency, and alignment with ethical AI practices.
  • 38
    Qwen2.5-VL-32B
    Qwen2.5-VL-32B is a state-of-the-art AI model designed for multimodal tasks, offering advanced capabilities in both text and image reasoning. It builds upon the earlier Qwen2.5-VL series, improving response quality with more human-like, formatted answers. The model excels in mathematical reasoning, fine-grained image understanding, and complex, multi-step reasoning tasks, such as those found in MathVista and MMMU benchmarks. Its superior performance has been demonstrated in comparison to other models, outperforming the larger Qwen2-VL-72B in certain areas. With improved image parsing and visual logic deduction, Qwen2.5-VL-32B provides a detailed, accurate analysis of images and can generate responses based on complex visual inputs. It has been optimized for both text and image tasks, making it ideal for applications requiring sophisticated reasoning and understanding across different media.
  • 39
    SeyftAI

    SeyftAI

    SeyftAI

    SeyftAI is a real-time, multi-modal content moderation platform that filters harmful and irrelevant content across text, images, and videos, ensuring compliance and offering personalized solutions for diverse languages and cultural contexts. SeyftAI offers a comprehensive suite of content moderation tools to help you keep your digital spaces clean and safe. Detect and filter out harmful text in multiple languages. SeyftAI's API makes it easy to integrate our content moderation capabilities into your existing applications and workflows. Detect and filter out harmful or explicit images with zero human intervention. Easily integrate SeyftAI's content moderation capabilities. Tailor our content moderation workflows to your specific needs. Access detailed reports and analytics on your content moderation activities. A real-time, multi-modal content moderation platform that filters harmful and irrelevant content across text, images, and videos, ensuring compliance.
  • 40
    Mistral Large 3
    Mistral Large 3 is a next-generation, open multimodal AI model built with a powerful sparse Mixture-of-Experts architecture featuring 41B active parameters out of 675B total. Designed from scratch on NVIDIA H200 GPUs, it delivers frontier-level reasoning, multilingual performance, and advanced image understanding while remaining fully open-weight under the Apache 2.0 license. The model achieves top-tier results on modern instruction benchmarks, positioning it among the strongest permissively licensed foundation models available today. With native support across vLLM, TensorRT-LLM, and major cloud providers, Mistral Large 3 offers exceptional accessibility and performance efficiency. Its design enables enterprise-grade customization, letting teams fine-tune or adapt the model for domain-specific workflows and proprietary applications. Mistral Large 3 represents a major advancement in open AI, offering frontier intelligence without sacrificing transparency or control.
  • 41
    Inception Labs

    Inception Labs

    Inception Labs

    Inception Labs is pioneering the next generation of AI with diffusion-based large language models (dLLMs), a breakthrough in AI that offers 10x faster performance and 5-10x lower cost than traditional autoregressive models. Inspired by the success of diffusion models in image and video generation, Inception’s dLLMs introduce enhanced reasoning, error correction, and multimodal capabilities, allowing for more structured and accurate text generation. With applications spanning enterprise AI, research, and content generation, Inception’s approach sets a new standard for speed, efficiency, and control in AI-driven workflows.
  • 42
    FLUX.1 Kontext

    FLUX.1 Kontext

    Black Forest Labs

    FLUX.1 Kontext is a suite of generative flow matching models developed by Black Forest Labs, enabling users to generate and edit images using both text and image prompts. This multimodal approach allows for in-context image generation, facilitating seamless extraction and modification of visual concepts to produce coherent renderings. Unlike traditional text-to-image models, FLUX.1 Kontext unifies instant text-based image editing with text-to-image generation, offering capabilities such as character consistency, context understanding, and local editing. Users can perform targeted modifications on specific elements within an image without affecting the rest, preserve unique styles from reference images, and iteratively refine creations with minimal latency.
  • 43
    SmolVLM

    SmolVLM

    Hugging Face

    SmolVLM-Instruct is a compact, AI-powered multimodal model that combines the capabilities of vision and language processing, designed to handle tasks like image captioning, visual question answering, and multimodal storytelling. It works with both text and image inputs, providing highly efficient results while being optimized for smaller, resource-constrained environments. Built with SmolLM2 as its text decoder and SigLIP as its image encoder, the model offers improved performance for tasks that require integration of both textual and visual information. SmolVLM-Instruct can be fine-tuned for specific applications, offering businesses and developers a versatile tool for creating intelligent, interactive systems that require multimodal inputs.
  • 44
    Gen-2

    Gen-2

    Runway

    Gen-2: The Next Step Forward for Generative AI. A multi-modal AI system that can generate novel videos with text, images, or video clips. Realistically and consistently synthesize new videos. Either by applying the composition and style of an image or text prompt to the structure of a source video (Video to Video). Or, using nothing but words (Text to Video). It's like filming something new, without filming anything at all. Based on user studies, results from Gen-2 are preferred over existing methods for image-to-image and video-to-video translation.
    Starting Price: $15 per month
  • 45
    Amazon Nova 2 Omni
    Nova 2 Omni is a fully unified multimodal reasoning and generation model capable of understanding and producing content across text, images, video, and speech. It can take in extremely large inputs, ranging from hundreds of thousands of words to hours of audio and lengthy videos, while maintaining coherent analysis across formats. This allows it to digest full product catalogs, long-form documents, customer testimonials, and complete video libraries all at the same time, giving teams a single system that replaces the need for multiple specialized models. With its ability to handle mixed media in one workflow, Nova 2 Omni opens new possibilities for creative and operational automation. A marketing team, for example, can feed in product specs, brand guidelines, reference images, and video content and instantly generate an entire campaign, including messaging, social content, and visuals, in one pass.
  • 46
    Florence-2

    Florence-2

    Microsoft

    Florence-2-large is an advanced vision foundation model developed by Microsoft, capable of handling a wide variety of vision and vision-language tasks, such as captioning, object detection, segmentation, and OCR. Built with a sequence-to-sequence architecture, it uses the FLD-5B dataset containing over 5 billion annotations and 126 million images to master multi-task learning. Florence-2-large excels in both zero-shot and fine-tuned settings, providing high-quality results with minimal training. The model supports tasks including detailed captioning, object detection, and dense region captioning, and can process images with text prompts to generate relevant responses. It offers great flexibility by handling diverse vision-related tasks through prompt-based approaches, making it a competitive tool in AI-powered visual tasks. The model is available on Hugging Face with pre-trained weights, enabling users to quickly get started with image processing and task execution.
  • 47
    Holo2

    Holo2

    H Company

    H Company’s Holo2 model family delivers cost-efficient, high-performance vision-language models tailored for computer-use agents that navigate, localize UI elements, and act across web, desktop, and mobile environments. The series, available in 4 B, 8 B, and 30 B-A3B sizes, builds on their earlier Holo1 and Holo1.5 models, retaining strong UI grounding while significantly enhancing navigation capabilities. Holo2 models use a mixture-of-experts (MoE) architecture, activating only necessary parameters, to optimize efficiency. Trained on curated localization and agent datasets, they can be deployed as drop-in replacements for their predecessors. They support seamless inference in frameworks compatible with Qwen3-VL models and can be integrated into agentic pipelines like Surfer 2. In benchmark testing, Holo2-30B-A3B achieved 66.1% accuracy on ScreenSpot-Pro and 76.1% on OSWorld-G, leading the UI localization category.
  • 48
    TagX

    TagX

    TagX

    TagX delivers comprehensive data and AI solutions, offering services like AI model development, generative AI, and a full data lifecycle including collection, curation, web scraping, and annotation across modalities (image, video, text, audio, 3D/LiDAR), as well as synthetic data generation and intelligent document processing. TagX's division specializes in building, fine‑tuning, deploying, and managing multimodal models (GANs, VAEs, transformers) for image, video, audio, and language tasks. It supports robust APIs for real‑time financial and employment intelligence. With GDPR, HIPAA compliance, and ISO 27001 certification, TagX serves industries from agriculture and autonomous driving to finance, logistics, healthcare, and security, delivering privacy‑aware, scalable, customizable AI datasets and models. Its end‑to‑end approach, from annotation guidelines and foundational model selection to deployment and monitoring, helps enterprises automate documentation.
  • 49
    Seaweed

    Seaweed

    ByteDance

    Seaweed is a foundational AI model for video generation developed by ByteDance. It utilizes a diffusion transformer architecture with approximately 7 billion parameters, trained on a compute equivalent to 1,000 H100 GPUs. Seaweed learns world representations from vast multi-modal data, including video, image, and text, enabling it to create videos of various resolutions, aspect ratios, and durations from text descriptions. It excels at generating lifelike human characters exhibiting diverse actions, gestures, and emotions, as well as a wide variety of landscapes with intricate detail and dynamic composition. Seaweed offers enhanced controls, allowing users to generate videos from images by providing an initial frame to guide consistent motion and style throughout the video. It can also condition on both the first and last frames to create transition videos, and be fine-tuned to generate videos based on reference images.
  • 50
    NVIDIA Isaac GR00T
    NVIDIA Isaac GR00T (Generalist Robot 00 Technology) is a research-driven platform for developing general-purpose humanoid robot foundation models and data pipelines. It includes models like Isaac GR00T-N, and synthetic motion blueprints, GR00T-Mimic for augmenting demonstrations, and GR00T-Dreams for generating novel synthetic trajectories, to accelerate humanoid robotics development. Recently, the open source Isaac GR00T N1 foundation model debuted, featuring a dual-system cognitive architecture, a fast-reacting “System 1” action model, and a deliberative, language-enabled “System 2” reasoning model. The updated GR00T N1.5 introduces enhancements such as improved vision-language grounding, better language command following, few-shot adaptability, and new robot embodiment support. Together with tools like Isaac Sim, Lab, and Omniverse, GR00T empowers developers to train, simulate, post-train, and deploy adaptable humanoid agents using both real and synthetic data.