Alternatives to ClickHouse

Compare ClickHouse alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to ClickHouse in 2025. Compare features, ratings, user reviews, pricing, and more from ClickHouse competitors and alternatives in order to make an informed decision for your business.

  • 1
    Teradata VantageCloud
    Teradata VantageCloud: The complete cloud analytics and data platform for AI. Teradata VantageCloud is an enterprise-grade, cloud-native data and analytics platform that unifies data management, advanced analytics, and AI/ML capabilities in a single environment. Designed for scalability and flexibility, VantageCloud supports multi-cloud and hybrid deployments, enabling organizations to manage structured and semi-structured data across AWS, Azure, Google Cloud, and on-premises systems. It offers full ANSI SQL support, integrates with open-source tools like Python and R, and provides built-in governance for secure, trusted AI. VantageCloud empowers users to run complex queries, build data pipelines, and operationalize machine learning models—all while maintaining interoperability with modern data ecosystems.
    Compare vs. ClickHouse View Software
    Visit Website
  • 2
    Google Cloud BigQuery
    BigQuery is a serverless, multicloud data warehouse that simplifies the process of working with all types of data so you can focus on getting valuable business insights quickly. At the core of Google’s data cloud, BigQuery allows you to simplify data integration, cost effectively and securely scale analytics, share rich data experiences with built-in business intelligence, and train and deploy ML models with a simple SQL interface, helping to make your organization’s operations more data-driven. Gemini in BigQuery offers AI-driven tools for assistance and collaboration, such as code suggestions, visual data preparation, and smart recommendations designed to boost efficiency and reduce costs. BigQuery delivers an integrated platform featuring SQL, a notebook, and a natural language-based canvas interface, catering to data professionals with varying coding expertise. This unified workspace streamlines the entire analytics process.
    Compare vs. ClickHouse View Software
    Visit Website
  • 3
    StarTree

    StarTree

    StarTree

    StarTree, powered by Apache Pinot™, is a fully managed real-time analytics platform built for customer-facing applications that demand instant insights on the freshest data. Unlike traditional data warehouses or OLTP databases—optimized for back-office reporting or transactions—StarTree is engineered for real-time OLAP at true scale, meaning: - Data Volume: query performance sustained at petabyte scale - Ingest Rates: millions of events per second, continuously indexed for freshness - Concurrency: thousands to millions of simultaneous users served with sub-second latency With StarTree, businesses deliver always-fresh insights at interactive speed, enabling applications that personalize, monitor, and act in real time.
  • 4
    Edge Delta

    Edge Delta

    Edge Delta

    Edge Delta is a new way to do observability that helps developers and operations teams monitor datasets and create telemetry pipelines. We process your log data as it's created and give you the freedom to route it anywhere. Our primary differentiator is our distributed architecture. We are the only observability provider that pushes data processing upstream to the infrastructure level, enabling users to process their logs and metrics as soon as they’re created at the source. We combine our distributed approach with a column-oriented backend to help users store and analyze massive data volumes without impacting performance or cost. By using Edge Delta, customers can reduce observability costs without sacrificing visibility. Additionally, they can surface insights and trigger alerts before data leaves their environment.
    Starting Price: $0.20 per GB
  • 5
    Snowflake

    Snowflake

    Snowflake

    Snowflake is a comprehensive AI Data Cloud platform designed to eliminate data silos and simplify data architectures, enabling organizations to get more value from their data. The platform offers interoperable storage that provides near-infinite scale and access to diverse data sources, both inside and outside Snowflake. Its elastic compute engine delivers high performance for any number of users, workloads, and data volumes with seamless scalability. Snowflake’s Cortex AI accelerates enterprise AI by providing secure access to leading large language models (LLMs) and data chat services. The platform’s cloud services automate complex resource management, ensuring reliability and cost efficiency. Trusted by over 11,000 global customers across industries, Snowflake helps businesses collaborate on data, build data applications, and maintain a competitive edge.
    Starting Price: $2 compute/month
  • 6
    Amazon Redshift
    More customers pick Amazon Redshift than any other cloud data warehouse. Redshift powers analytical workloads for Fortune 500 companies, startups, and everything in between. Companies like Lyft have grown with Redshift from startups to multi-billion dollar enterprises. No other data warehouse makes it as easy to gain new insights from all your data. With Redshift you can query petabytes of structured and semi-structured data across your data warehouse, operational database, and your data lake using standard SQL. Redshift lets you easily save the results of your queries back to your S3 data lake using open formats like Apache Parquet to further analyze from other analytics services like Amazon EMR, Amazon Athena, and Amazon SageMaker. Redshift is the world’s fastest cloud data warehouse and gets faster every year. For performance intensive workloads you can use the new RA3 instances to get up to 3x the performance of any cloud data warehouse.
    Starting Price: $0.25 per hour
  • 7
    MongoDB

    MongoDB

    MongoDB

    MongoDB is a general purpose, document-based, distributed database built for modern application developers and for the cloud era. No database is more productive to use. Ship and iterate 3–5x faster with our flexible document data model and a unified query interface for any use case. Whether it’s your first customer or 20 million users around the world, meet your performance SLAs in any environment. Easily ensure high availability, protect data integrity, and meet the security and compliance standards for your mission-critical workloads. An integrated suite of cloud database services that allow you to address a wide variety of use cases, from transactional to analytical, from search to data visualizations. Launch secure mobile apps with native, edge-to-cloud sync and automatic conflict resolution. Run MongoDB anywhere, from your laptop to your data center.
  • 8
    MonetDB

    MonetDB

    MonetDB

    Choose from a wide range of SQL features to realise your applications from pure analytics to hybrid transactional/analytical processing. When you're curious about what's in your data; when you want to work efficiently; when your deadline is closing: MonetDB returns query result in mere seconds or even less. When you want to (re)use your own code; when you need specialised functions: use the hooks to add your own user-defined functions in SQL, Python, R or C/C++. Join us and expand the MonetDB community spread over 130+ countries with students, teachers, researchers, start-ups, small businesses and multinational enterprises. Join the leading Database in Analytical Jobs and surf the innovation! Don’t lose time with complex installation, use MonetDB’s easy setup to get your DBMS up and running quickly.
  • 9
    Oceanbase

    Oceanbase

    Oceanbase

    OceanBase eliminates the complexity of traditional sharding databases, enabling you to effortlessly scale your database to meet ever-growing workloads, whether horizontally, vertically, or even at the tenant level. This facilitates on-the-fly scaling and linear performance growth without downtime or necessitating changes to applications in high-concurrency scenarios, ensuring quicker and more reliable responses to performance-intensive critical workloads. Empower mission-critical workloads and performance-intensive applications across both OLTP and OLAP scenarios, all while maintaining full compatibility with MySQL. 100% ACID Compliance, natively supports distributed transactions with multi-replica strong synchronization built upon Paxos protocols. Experience ultimate query performance that your mission-critical and time-sensitive workloads can depend on. This effectively eliminates downtime, and ensures your mission-critical workload remains always available.
  • 10
    Oxla

    Oxla

    Oxla

    Purpose-built for compute, memory, and storage efficiency, Oxla is a self-hosted data warehouse optimized for large-scale, low-latency analytics with robust time-series support. Cloud data warehouses aren’t for everyone. At scale, long-term cloud compute costs outweigh short-term infrastructure savings, and regulated industries require full control over data beyond VPC and BYOC deployments. Oxla outperforms both legacy and cloud warehouses through efficiency, enabling scale for growing datasets with predictable costs, on-prem or in any cloud. Easily deploy, run, and maintain Oxla with Docker and YAML to power diverse workloads in a single, self-hosted data warehouse.
    Starting Price: $50 per CPU core / monthly
  • 11
    QuestDB

    QuestDB

    QuestDB

    QuestDB is a relational column-oriented database designed for time series and event data. It uses SQL with extensions for time series to assist with real-time analytics. These pages cover core concepts of QuestDB, including setup steps, usage guides, and reference documentation for syntax, APIs and configuration. This section describes the architecture of QuestDB, how it stores and queries data, and introduces features and capabilities unique to the system. Designated timestamp is a core feature that enables time-oriented language capabilities and partitioning. Symbol type makes storing and retrieving repetitive strings efficient. Storage model describes how QuestDB stores records and partitions within tables. Indexes can be used for faster read access on specific columns. Partitions can be used for significant performance benefits on calculations and queries. SQL extensions allow performant time series analysis with a concise syntax.
  • 12
    TimescaleDB

    TimescaleDB

    Tiger Data

    TimescaleDB is the leading time-series database built on PostgreSQL, designed to handle massive volumes of real-time data efficiently. It enables organizations to store, analyze, and query time-series data — such as IoT sensor data, financial transactions, or event logs — using standard SQL. With hypertables, TimescaleDB automatically partitions data by time and ID for fast ingestion and predictable query performance. Its compression engine reduces storage costs by up to 95%, while continuous aggregates make real-time dashboards instantly responsive. Fully compatible with PostgreSQL, it integrates seamlessly with existing tools and applications. TimescaleDB combines the simplicity of Postgres with the scalability and speed of a specialized analytical system.
  • 13
    YDB

    YDB

    YDB

    Entrust YDB with keeping your application state regardless of how large or frequently modified it is. Handling petabytes of data and millions of transactions per second is not an issue. Build analytical reports based on data you store in YDB with performance comparable to database management systems purpose-built for this use case. No compromises on consistency and availability are necessary. Use the YDB topics feature to reliably send data between your applications or consume change data capture feed from regular tables. Exactly-once and at-least-once semantics are available to choose from. YDB is designed to work in three availability zones, ensuring availability even if the whole availability zone goes offline. It recovers automatically after a disk, server, or data center failure with minimum latency disruptions for applications.
  • 14
    ksqlDB

    ksqlDB

    Confluent

    Now that your data is in motion, it’s time to make sense of it. Stream processing enables you to derive instant insights from your data streams, but setting up the infrastructure to support it can be complex. That’s why Confluent developed ksqlDB, the database purpose-built for stream processing applications. Make your data immediately actionable by continuously processing streams of data generated throughout your business. ksqlDB’s intuitive syntax lets you quickly access and augment data in Kafka, enabling development teams to seamlessly create real-time innovative customer experiences and fulfill data-driven operational needs. ksqlDB offers a single solution for collecting streams of data, enriching them, and serving queries on new derived streams and tables. That means less infrastructure to deploy, maintain, scale, and secure. With less moving parts in your data architecture, you can focus on what really matters -- innovation.
  • 15
    TiDB

    TiDB

    PingCAP

    An open-source, cloud-native, distributed SQL database for elastic scale and real-time analytics. Supported by a wealth of open-source data migration tools in the ecosystem, TiDB gives you the freedom to choose your own vendor and avoid lock-in. Purposely built to deliver SQL at scale, TiDB eliminates the scaling problems of traditional relational databases without intrusion to your application. HTAP database platform that enables real-time situation awareness and decision making on live transactional data and eliminates friction between IT and business goals. TiDB is ACID-compliant and strongly consistent. You can use TiDB as a scale-out MySQL database with familiar SQL syntaxes and ecosystem tools. TiDB automatically shards your data so you don’t have to do it manually. You can simply add new nodes to scale horizontally and elastically to meet your business growth. TiDB simplifies the ETL process and automatically recovers from errors.
  • 16
    VMware Tanzu Greenplum
    Free your apps. Simplify your ops. To win in business today, you have to be great at software. How do you improve feature velocity on the workloads that power your business? Or effectively run and manage modernized workloads on any cloud? VMware Tanzu—coupled with VMware Pivotal Labs—enables you to transform your teams and your applications, while simplifying operations across multi-cloud infrastructure: on-premises, public cloud, and edge.
  • 17
    Citus

    Citus

    Citus Data

    Citus gives you the Postgres you love, plus the superpower of distributed tables. 100% open source. Now with schema-based and row-based sharding, plus Postgres 16 support. Scale Postgres by distributing data & queries. You can start with a single Citus node, then add nodes & rebalance shards when you need to grow. Speed up queries by 20x to 300x (or more) through parallelism, keeping more data in memory, higher I/O bandwidth, and columnar compression. Citus is an extension (not a fork) to the latest Postgres versions, so you can use your familiar SQL toolset & leverage your Postgres expertise. Reduce your infrastructure headaches by using a single database for both your transactional and analytical workloads. Download and use Citus open source for free. You can manage Citus yourself, embrace open source, and help us improve Citus via GitHub. Focus on your application & forget about your database. Run your app on Citus in the cloud with Azure Cosmos DB for PostgreSQL.
    Starting Price: $0.27 per hour
  • 18
    Databend

    Databend

    Databend

    Databend is a modern, cloud-native data warehouse built to deliver high-performance, cost-efficient analytics for large-scale data processing. It is designed with an elastic architecture that scales dynamically to meet the demands of different workloads, ensuring efficient resource utilization and lower operational costs. Written in Rust, Databend offers exceptional performance through features like vectorized query execution and columnar storage, which optimize data retrieval and processing speeds. Its cloud-first design enables seamless integration with cloud platforms, and it emphasizes reliability, data consistency, and fault tolerance. Databend is an open source solution, making it a flexible and accessible choice for data teams looking to handle big data analytics in the cloud.
  • 19
    CrateDB

    CrateDB

    CrateDB

    The enterprise database for time series, documents, and vectors. Store any type of data and combine the simplicity of SQL with the scalability of NoSQL. CrateDB is an open source distributed database running queries in milliseconds, whatever the complexity, volume and velocity of data.
  • 20
    Apache Druid
    Apache Druid is an open source distributed data store. Druid’s core design combines ideas from data warehouses, timeseries databases, and search systems to create a high performance real-time analytics database for a broad range of use cases. Druid merges key characteristics of each of the 3 systems into its ingestion layer, storage format, querying layer, and core architecture. Druid stores and compresses each column individually, and only needs to read the ones needed for a particular query, which supports fast scans, rankings, and groupBys. Druid creates inverted indexes for string values for fast search and filter. Out-of-the-box connectors for Apache Kafka, HDFS, AWS S3, stream processors, and more. Druid intelligently partitions data based on time and time-based queries are significantly faster than traditional databases. Scale up or down by just adding or removing servers, and Druid automatically rebalances. Fault-tolerant architecture routes around server failures.
  • 21
    Apache Kudu

    Apache Kudu

    The Apache Software Foundation

    A Kudu cluster stores tables that look just like tables you're used to from relational (SQL) databases. A table can be as simple as a binary key and value, or as complex as a few hundred different strongly-typed attributes. Just like SQL, every table has a primary key made up of one or more columns. This might be a single column like a unique user identifier, or a compound key such as a (host, metric, timestamp) tuple for a machine time-series database. Rows can be efficiently read, updated, or deleted by their primary key. Kudu's simple data model makes it a breeze to port legacy applications or build new ones, no need to worry about how to encode your data into binary blobs or make sense of a huge database full of hard-to-interpret JSON. Tables are self-describing, so you can use standard tools like SQL engines or Spark to analyze your data. Kudu's APIs are designed to be easy to use.
  • 22
    Apache Kylin

    Apache Kylin

    Apache Software Foundation

    Apache Kylin™ is an open source, distributed Analytical Data Warehouse for Big Data; it was designed to provide OLAP (Online Analytical Processing) capability in the big data era. By renovating the multi-dimensional cube and precalculation technology on Hadoop and Spark, Kylin is able to achieve near constant query speed regardless of the ever-growing data volume. Reducing query latency from minutes to sub-second, Kylin brings online analytics back to big data. Kylin can analyze 10+ billions of rows in less than a second. No more waiting on reports for critical decisions. Kylin connects data on Hadoop to BI tools like Tableau, PowerBI/Excel, MSTR, QlikSense, Hue and SuperSet, making the BI on Hadoop faster than ever. As an Analytical Data Warehouse, Kylin offers ANSI SQL on Hadoop/Spark and supports most ANSI SQL query functions. Kylin can support thousands of interactive queries at the same time, thanks to the low resource consumption of each query.
  • 23
    Greenplum

    Greenplum

    Greenplum Database

    Greenplum Database® is an advanced, fully featured, open source data warehouse. It provides powerful and rapid analytics on petabyte scale data volumes. Uniquely geared toward big data analytics, Greenplum Database is powered by the world’s most advanced cost-based query optimizer delivering high analytical query performance on large data volumes. Greenplum Database® project is released under the Apache 2 license. We want to thank all our current community contributors and are interested in all new potential contributions. For the Greenplum Database community no contribution is too small, we encourage all types of contributions. An open-source massively parallel data platform for analytics, machine learning and AI. Rapidly create and deploy models for complex applications in cybersecurity, predictive maintenance, risk management, fraud detection, and many other areas. Experience the fully featured, integrated, open source analytics platform.
  • 24
    DuckDB

    DuckDB

    DuckDB

    Processing and storing tabular datasets, e.g. from CSV or Parquet files. Large result set transfer to client. Large client/server installations for centralized enterprise data warehousing. Writing to a single database from multiple concurrent processes. DuckDB is a relational database management system (RDBMS). That means it is a system for managing data stored in relations. A relation is essentially a mathematical term for a table. Each table is a named collection of rows. Each row of a given table has the same set of named columns, and each column is of a specific data type. Tables themselves are stored inside schemas, and a collection of schemas constitutes the entire database that you can access.
  • 25
    Yandex Managed Service for ClickHouse
    Invest your time in your project, and we’ll take care of database maintenance: software backups, monitoring, fault tolerance, and updates. ClickHouse is great at handling queries to large amounts of data in real time, while column-based storage saves space due to strong data compression. All DBMS connections are encrypted using the TLS protocol. Data is secured in accordance with the requirements of local regulatory, GDPR, and ISO industry standards. Visualize the data structure in your ClickHouse cluster and send SQL queries to databases from the management console. The service also provides data replication between database hosts (both inside and between availability zones) and automatically switches the load over to a backup replica in the event of a failure.
    Starting Price: $42.51 per month
  • 26
    CelerData Cloud
    CelerData is a high-performance SQL engine built to power analytics directly on data lakehouses, eliminating the need for traditional data‐warehouse ingestion pipelines. It delivers sub-second query performance at scale, supports on-the‐fly JOINs without costly denormalization, and simplifies architecture by allowing users to run demanding workloads on open format tables. Built on the open source engine StarRocks, the platform outperforms legacy query engines like Trino, ClickHouse, and Apache Druid in latency, concurrency, and cost-efficiency. With a cloud-managed service that runs in your own VPC, you retain infrastructure control and data ownership while CelerData handles maintenance and optimization. The platform is positioned to power real-time OLAP, business intelligence, and customer-facing analytics use cases and is trusted by enterprise customers (including names such as Pinterest, Coinbase, and Fanatics) who have achieved significant latency reductions and cost savings.
  • 27
    Altinity

    Altinity

    Altinity

    Altinity's expert engineering team can implement everything from core ClickHouse features to Kubernetes operator behavior to client library improvements. A flexible docker-based GUI manager for ClickHouse that can do the following: Install ClickHouse clusters; Add, delete, and replace nodes; Monitor cluster status; Help with troubleshooting and diagnostics. 3rd party tools and software integrations: Ingest: Kafka, ClickTail; APIs: Python, Golang, ODBC, Java; Kubernetes; UI tools: Grafana, Superset, Tabix, Graphite; Databases: MySQL, PostgreSQL; BI tools: Tableau and many more. Altinity.Cloud incorporates lessons from helping hundreds of customers operate ClickHouse-based analytics. Altinity.Cloud has a Kubernetes-based architecture that delivers portability and user choice of where to operate. Designed from the beginning to run anywhere without lock-in. Cost management is critical for SaaS businesses.
  • 28
    QuasarDB

    QuasarDB

    QuasarDB

    Quasar's brain is QuasarDB, a high-performance, distributed, column-oriented timeseries database management system designed from the ground up to deliver real-time on petascale use cases. Up to 20X less disk usage. Quasardb ingestion and compression capabilities are unmatched. Up to 10,000X faster feature extraction. QuasarDB can extract features in real-time from the raw data, thanks to the combination of a built-in map/reduce query engine, an aggregation engine that leverages SIMD from modern CPUs, and stochastic indexes that use virtually no disk space. The most cost-effective timeseries solution, thanks to its ultra-efficient resource usage, the capability to leverage object storage (S3), unique compression technology, and fair pricing model. Quasar runs everywhere, from 32-bit ARM devices to high-end Intel servers, from Edge Computing to the cloud or on-premises.
  • 29
    SelectDB

    SelectDB

    SelectDB

    SelectDB is a modern data warehouse based on Apache Doris, which supports rapid query analysis on large-scale real-time data. From Clickhouse to Apache Doris, to achieve the separation of the lake warehouse and upgrade to the lake warehouse. The fast-hand OLAP system carries nearly 1 billion query requests every day to provide data services for multiple scenes. Due to the problems of storage redundancy, resource seizure, complicated governance, and difficulty in querying and adjustment, the original lake warehouse separation architecture was decided to introduce Apache Doris lake warehouse, combined with Doris's materialized view rewriting ability and automated services, to achieve high-performance data query and flexible data governance. Write real-time data in seconds, and synchronize flow data from databases and data streams. Data storage engine for real-time update, real-time addition, and real-time pre-polymerization.
    Starting Price: $0.22 per hour
  • 30
    SingleStore

    SingleStore

    SingleStore

    SingleStore (formerly MemSQL) is a distributed, highly-scalable SQL database that can run anywhere. We deliver maximum performance for transactional and analytical workloads with familiar relational models. SingleStore is a scalable SQL database that ingests data continuously to perform operational analytics for the front lines of your business. Ingest millions of events per second with ACID transactions while simultaneously analyzing billions of rows of data in relational SQL, JSON, geospatial, and full-text search formats. SingleStore delivers ultimate data ingestion performance at scale and supports built in batch loading and real time data pipelines. SingleStore lets you achieve ultra fast query response across both live and historical data using familiar ANSI SQL. Perform ad hoc analysis with business intelligence tools, run machine learning algorithms for real-time scoring, perform geoanalytic queries in real time.
    Starting Price: $0.69 per hour
  • 31
    Hydra

    Hydra

    Hydra

    Hydra is an open source, column-oriented Postgres. Query billions of rows instantly, no code changes. Hydra parallelizes and vectorizes aggregates (COUNT, SUM, AVG) to deliver the speed you’ve always wanted on Postgres. Boost performance at every size! Set up Hydra in 5 minutes without changing your syntax, tools, data model, or extensions. Use Hydra Cloud for fully managed operations and smooth sailing. Different industries have different needs. Get better analytics with powerful Postgres extensions, custom functions, and take control. Built by you, for you. Hydra is the fastest Postgres in the market for analytics. Boost performance with columnar storage, vectorization, and query parallelization.
  • 32
    ParadeDB

    ParadeDB

    ParadeDB

    ParadeDB brings column-oriented storage and vectorized query execution to Postgres tables. Users can choose between row and column-oriented storage at table creation time. Column-oriented tables are stored as Parquet files and are managed by Delta Lake. Search by keyword with BM25 scoring, configurable tokenizers, and multi-language support. Search by semantic meaning with support for sparse and dense vectors. Surface results with higher accuracy by combining the strengths of full text and similarity search. ParadeDB is ACID-compliant with concurrency controls across all transactions. ParadeDB integrates with the Postgres ecosystem, including clients, extensions, and libraries.
  • 33
    CockroachDB

    CockroachDB

    Cockroach Labs

    CockroachDB: Cloud-native, distributed SQL. Your cloud applications deserve a cloud-native database. Cloud-based apps and services deserve a database that scales across clouds, eases operational complexity, and improves reliability. CockroachDB delivers resilient, distributed SQL with ACID transactions and data partitioned by location. Automate operations for mission-critical applications by pairing CockroachDB with orchestration tools like Kubernetes and Mesosphere DC/OS. Every node can service both reads and writes so that you can scale query throughput and database capacity by simply adding more endpoints. Just add new nodes to CockroachDB, and it automatically rebalances data, completely removing the pain of manual sharding. As demand shifts, CockroachDB detects hotspots and intelligently distributes data to maintain performance. Tune your database at the row level so that data lives close to your users and you can minimize query latency.
  • 34
    Apache Cassandra

    Apache Cassandra

    Apache Software Foundation

    The Apache Cassandra database is the right choice when you need scalability and high availability without compromising performance. Linear scalability and proven fault-tolerance on commodity hardware or cloud infrastructure make it the perfect platform for mission-critical data. Cassandra's support for replicating across multiple datacenters is best-in-class, providing lower latency for your users and the peace of mind of knowing that you can survive regional outages.
  • 35
    Better Stack

    Better Stack

    Better Stack

    Better Stack is a unified observability tool that helps you ship better software, faster. Schedule on-call rotations, receive actionable alerts, and resolve incidents with ease. Better Stack brings together incident management, uptime monitoring, status pages, log management, and infrastructure monitoring – all in one place. Built for speed and scale, it combines multiple monitoring and alerting workflows into a single, powerful interface that boosts visibility and slashes response times. Key features include an OpenTelemetry-native Kubernetes collector powered by eBPF, real-time alerting, and collaborative dashboards. Under the hood, Better Stack runs on ClickHouse, enabling lightning-fast queries and scalable ingestion across high-cardinality datasets. You can visualize your entire stack, turn all your logs into structured data, and query everything with SQL – as if it were a single database. Seamlessly integrates into your workflow with 100+ integrations.
    Leader badge
    Starting Price: $29 per month
  • 36
    SigNoz

    SigNoz

    SigNoz

    SigNoz is an open source Datadog or New Relic alternative. A single tool for all your observability needs, APM, logs, metrics, exceptions, alerts, and dashboards powered by a powerful query builder. You don’t need to manage multiple tools for traces, metrics, and logs. Get great out-of-the-box charts and a powerful query builder to dig deeper into your data. Using an open source standard frees you from vendor lock-in. Use auto-instrumentation libraries of OpenTelemetry to get started with little to no code change. OpenTelemetry is a one-stop solution for all your telemetry needs. A single standard for all telemetry signals means increased developer productivity and consistency across teams. Write queries on all telemetry signals. Run aggregates, and apply filters and formulas to get deeper insights from your data. SigNoz uses ClickHouse, a fast open source distributed columnar database. Ingestion and aggregations are lightning-fast.
    Starting Price: $199 per month
  • 37
    Apache Pinot

    Apache Pinot

    Apache Corporation

    Pinot is designed to answer OLAP queries with low latency on immutable data. Pluggable indexing technologies - Sorted Index, Bitmap Index, Inverted Index. Joins are currently not supported, but this problem can be overcome by using Trino or PrestoDB for querying. SQL like language that supports selection, aggregation, filtering, group by, order by, distinct queries on data. Consist of of both offline and real-time table. Use real-time table only to cover segments for which offline data may not be available yet. Detect the right anomalies by customizing anomaly detect flow and notification flow.
  • 38
    InfiniDB

    InfiniDB

    Database of Databases

    InfiniDB is a column-store DBMS optimized for OLAP workloads. It has a distributed architecture to support Massive Paralllel Processing (MPP). It uses MySQL as its front-end such that users familiar with MySQL can quickly migrate to InfiniDB. Due to this fact, users can connect to InfiniDB using any MySQL connector. InfiniDB applies MVCC to do concurrency control. It uses term System Change Number (SCN) to indicate a version of the system. In its Block Resolution Manager (BRM), it utilizes three structures, version buffer, version substitution structure, and version buffer block manager, to manage multiple versions. InfiniDB applies deadlock detection to resolve conflicts. InfiniDB uses MySQL as its front-end and supports all MySQL syntaxes, including foreign keys. InfiniDB is a columnar DBMS. For each column, InfiniDB applies range partitioning and stores the minimum and maximum value of each partition in a small structure called extent map.
  • 39
    ChartDB

    ChartDB

    ChartDB

    ChartDB is an open source, web‑based database diagramming tool that instantly visualizes your schema, whether from popular DBMSs like PostgreSQL, MySQL, SQL Server, SQLite, ClickHouse, and Oracle, or via a single query, without needing database access or complex setup. You can edit diagrams interactively using drag‑and‑drop, add annotations, or customize relationships, then export clean, dialect‑specific SQL DDL scripts or share diagrams as images. ChartDB Cloud accelerates workflows further with features like real‑time collaboration, live cursors, team avatars, and synced edits, plus auto‑saving of your work. Its AI assistant enhances productivity by detecting missing relationships, recommending foreign keys, and suggesting schema optimizations with a single click. Diagrams stay current through automated schema synchronization via a secure syncer CLI, ideal for CI/CD pipelines, preserving layout and styling even as your data model evolves.
  • 40
    Presto

    Presto

    Presto Foundation

    Presto is an open source distributed SQL query engine for running interactive analytic queries against data sources of all sizes ranging from gigabytes to petabytes. For data engineers who struggle with managing multiple query languages and interfaces to siloed databases and storage, Presto is the fast and reliable engine that provides one simple ANSI SQL interface for all your data analytics and your open lakehouse. Different engines for different workloads means you will have to re-platform down the road. With Presto, you get 1 familar ANSI SQL language and 1 engine for your data analytics so you don't need to graduate to another lakehouse engine. Presto can be used for interactive and batch workloads, small and large amounts of data, and scales from a few to thousands of users. Presto gives you one simple ANSI SQL interface for all of your data in various siloed data systems, helping you join your data ecosystem together.
  • 41
    Trino

    Trino

    Trino

    Trino is a query engine that runs at ludicrous speed. Fast-distributed SQL query engine for big data analytics that helps you explore your data universe. Trino is a highly parallel and distributed query engine, that is built from the ground up for efficient, low-latency analytics. The largest organizations in the world use Trino to query exabyte-scale data lakes and massive data warehouses alike. Supports diverse use cases, ad-hoc analytics at interactive speeds, massive multi-hour batch queries, and high-volume apps that perform sub-second queries. Trino is an ANSI SQL-compliant query engine, that works with BI tools such as R, Tableau, Power BI, Superset, and many others. You can natively query data in Hadoop, S3, Cassandra, MySQL, and many others, without the need for complex, slow, and error-prone processes for copying the data. Access data from multiple systems within a single query.
  • 42
    StarRocks

    StarRocks

    StarRocks

    Whether you're working with a single table or multiple, you'll experience at least 300% better performance on StarRocks compared to other popular solutions. From streaming data to data capture, with a rich set of connectors, you can ingest data into StarRocks in real time for the freshest insights. A query engine that adapts to your use cases. Without moving your data or rewriting SQL, StarRocks provides the flexibility to scale your analytics on demand with ease. StarRocks enables a rapid journey from data to insight. StarRocks' performance is unmatched and provides a unified OLAP solution covering the most popular data analytics scenarios. Whether you're working with a single table or multiple, you'll experience at least 300% better performance on StarRocks compared to other popular solutions. StarRocks' built-in memory-and-disk-based caching framework is specifically designed to minimize the I/O overhead of fetching data from external storage to accelerate query performance.
  • 43
    Prisme Analytics

    Prisme Analytics

    Prisme Analytics

    Query, visualize, and understand your web traffic. With Prisme Analytics you can track metrics valuable to your business and create beautiful, flexible, and personalized dashboards. Our platform allows you to track custom events that truly matter for your business and design fully customizable dashboards to visualize your metrics in a way that suits your unique needs. Prisme is privacy-first by design, we don't use cookies and don't store any Personal Identifiable Information (PII). We comply by design with all privacy policies including GDPR, PECR, CCPA, and more. Prisme aims to be a real, privacy-friendly Google Analytics alternative. You shouldn't have to choose between respecting your user's privacy and using less functional tools. On top of everything, Prisme is simple to use, lightweight, flexible, and open source. Prisme Analytics is built on top of state-of-the-art open source data visualization and storage, respectively Grafana and ClickHouse.
  • 44
    Apache HBase

    Apache HBase

    The Apache Software Foundation

    Use Apache HBase™ when you need random, realtime read/write access to your Big Data. This project's goal is the hosting of very large tables -- billions of rows X millions of columns -- atop clusters of commodity hardware. Automatic failover support between RegionServers. Easy to use Java API for client access. Thrift gateway and a REST-ful Web service that supports XML, Protobuf, and binary data encoding options. Support for exporting metrics via the Hadoop metrics subsystem to files or Ganglia; or via JMX.
  • 45
    Google Cloud Bigtable
    Google Cloud Bigtable is a fully managed, scalable NoSQL database service for large analytical and operational workloads. Fast and performant: Use Cloud Bigtable as the storage engine that grows with you from your first gigabyte to petabyte-scale for low-latency applications as well as high-throughput data processing and analytics. Seamless scaling and replication: Start with a single node per cluster, and seamlessly scale to hundreds of nodes dynamically supporting peak demand. Replication also adds high availability and workload isolation for live serving apps. Simple and integrated: Fully managed service that integrates easily with big data tools like Hadoop, Dataflow, and Dataproc. Plus, support for the open source HBase API standard makes it easy for development teams to get started.
  • 46
    OpenText Analytics Database (Vertica)
    OpenText Analytics Database is a high-performance, scalable analytics platform that enables organizations to analyze massive data sets quickly and cost-effectively. It supports real-time analytics and in-database machine learning to deliver actionable business insights. The platform can be deployed flexibly across hybrid, multi-cloud, and on-premises environments to optimize infrastructure and reduce total cost of ownership. Its massively parallel processing (MPP) architecture handles complex queries efficiently, regardless of data size. OpenText Analytics Database also features compatibility with data lakehouse architectures, supporting formats like Parquet and ORC. With built-in machine learning and broad language support, it empowers users from SQL experts to Python developers to derive predictive insights.
  • 47
    Syself

    Syself

    Syself

    Managing Kubernetes shouldn't be a headache. With Syself Autopilot, both beginners and experts can deploy and maintain enterprise-grade clusters with ease. Say goodbye to downtime and complexity—our platform ensures automated upgrades, self-healing capabilities, and GitOps compatibility. Whether you're running on bare metal or cloud infrastructure, Syself Autopilot is designed to handle your needs, all while maintaining GDPR-compliant data protection. Syself Autopilot integrates with leading DevOps and infrastructure solutions, allowing you to build and scale applications effortlessly. Our platform supports: - Argo CD, Flux (GitOps & CI/CD) - MariaDB, PostgreSQL, MySQL, MongoDB, ClickHouse (Databases) - Grafana, Istio, Redis, NATS (Monitoring & Service Mesh) Need additional solutions? Our team helps you deploy, configure, and optimize your infrastructure for peak performance.
    Starting Price: €299/month
  • 48
    SSuite MonoBase Database

    SSuite MonoBase Database

    SSuite Office Software

    Create relational or flat file databases with unlimited tables, fields, and rows. Includes a custom report builder. Interface with ODBC compatible databases and create custom reports for them. Create your own personal and custom databases. Some Highlights: - Filter tables instantly - Ultra simple graphical-user-interface - One click table and data form creation - Open up to 5 databases simultaneously - Export your data to comma separated files - Create custom reports for all your databases - Full helpfile to assist in creating database reports - Print tables and queries directly from the data grid - Supports any SQL standard that your ODBC compatible database requires Please install and run this database application with full administrator rights for best performance and user experience. Requires: . 1024x768 Display Size . Windows 98 / XP / 7 / 8 / 10 - 32bit and 64bit No Java or DotNet required. Green Energy Software. Saving the planet one bit at a time...
  • 49
    Azure Synapse Analytics
    Azure Synapse is Azure SQL Data Warehouse evolved. Azure Synapse is a limitless analytics service that brings together enterprise data warehousing and Big Data analytics. It gives you the freedom to query data on your terms, using either serverless or provisioned resources—at scale. Azure Synapse brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs.
  • 50
    Objectivity/DB

    Objectivity/DB

    Objectivity, Inc.

    Objectivity/DB is a massively scalable, high performance, distributed Object Database (ODBMS). It is extremely good at handling complex data, where there are many types of connections between objects and many variants. Objectivity/DB can also serve as a massively scalable, high performance graph database. Its DO query language supports standard data retrieval queries as well as high-performance path-based navigational queries. Objectivity/DB is a distributed database, presenting a Single Logical View of its managed data. Data can be hosted on a single machine or distributed across up to 65,000 machines. Connected items can span machines. Objectivity/DB runs on 32 or 64-bit processors running Windows, Linux, and Mac OS X. APIs include: C++, C#, Java and Python. All platform and language combinations are interoperable. For example, objects stored by a program using C++ on Linux can be read by a C# program on Windows and a Java program on Mac OS X.
    Starting Price: See Pricing Details...