Compare the Top Machine Learning Software that integrates with GitHub as of July 2025

This a list of Machine Learning software that integrates with GitHub. Use the filters on the left to add additional filters for products that have integrations with GitHub. View the products that work with GitHub in the table below.

What is Machine Learning Software for GitHub?

Machine learning software enables developers and data scientists to build, train, and deploy models that can learn from data and make predictions or decisions without being explicitly programmed. These tools provide frameworks and algorithms for tasks such as classification, regression, clustering, and natural language processing. They often come with features like data preprocessing, model evaluation, and hyperparameter tuning, which help optimize the performance of machine learning models. With the ability to analyze large datasets and uncover patterns, machine learning software is widely used in industries like healthcare, finance, marketing, and autonomous systems. Overall, this software empowers organizations to leverage data for smarter decision-making and automation. Compare and read user reviews of the best Machine Learning software for GitHub currently available using the table below. This list is updated regularly.

  • 1
    Saturn Cloud

    Saturn Cloud

    Saturn Cloud

    Saturn Cloud is an AI/ML platform available on every cloud. Data teams and engineers can build, scale, and deploy their AI/ML applications with any stack. Quickly spin up environments to test new ideas, then easily deploy them into production. Scale fast—from proof-of-concept to production-ready applications. Customers include NVIDIA, CFA Institute, Snowflake, Flatiron School, Nestle, and more. Get started for free at: saturncloud.io
    Leader badge
    Starting Price: $0.005 per GB per hour
  • 2
    Gathr.ai

    Gathr.ai

    Gathr.ai

    Gathr is a Data+AI fabric, helping enterprises rapidly deliver production-ready data and AI products. Data+AI fabric enables teams to effortlessly acquire, process, and harness data, leverage AI services to generate intelligence, and build consumer applications— all with unparalleled speed, scale, and confidence. Gathr’s self-service, AI-assisted, and collaborative approach enables data and AI leaders to achieve massive productivity gains by empowering their existing teams to deliver more valuable work in less time. With complete ownership and control over data and AI, flexibility and agility to experiment and innovate on an ongoing basis, and proven reliable performance at real-world scale, Gathr allows them to confidently accelerate POVs to production. Additionally, Gathr supports both cloud and air-gapped deployments, making it the ideal choice for diverse enterprise needs. Gathr, recognized by leading analysts like Gartner and Forrester, is a go-to-partner for Fortune 500
    Leader badge
    Starting Price: $0.25/credit
  • 3
    Mixpanel

    Mixpanel

    Mixpanel

    At Mixpanel, our mission is to increase the rate of innovation. Not only as a company, but for the businesses we serve. Through our analytics and engagement product, companies can analyze how and why their users engage, convert, and retain in real-time across web, mobile, and smart devices. Then they can use that data to improve their business and products. Mixpanel serves over 26,000 companies from different industries around the world, including Samsung, Twitter, and BMW. Headquartered in San Francisco, Mixpanel has offices in New York, Seattle, Austin, London, Barcelona, Paris, and Singapore. Great products are built by teams who know their users. Go beneath the surface to learn which features are popular, who your power users are, and the behaviors tied to long-term retention. See which features are popular and how many power users you have.
    Leader badge
    Starting Price: $89 per month
  • 4
    Domino Enterprise MLOps Platform
    The Domino platform helps data science teams improve the speed, quality, and impact of data science at scale. Domino is open and flexible, empowering professional data scientists to use their preferred tools and infrastructure. Data science models get into production fast and are kept operating at peak performance with integrated workflows. Domino also delivers the security, governance and compliance that enterprises expect. The Self-Service Infrastructure Portal makes data science teams become more productive with easy access to their preferred tools, scalable compute, and diverse data sets. The Integrated Model Factory includes a workbench, model and app deployment, and integrated monitoring to rapidly experiment, deploy the best models in production, ensure optimal performance, and collaborate across the end-to-end data science lifecycle. The System of Record allows teams to easily find, reuse, reproduce, and build on any data science work to amplify innovation.
  • 5
    Dataiku

    Dataiku

    Dataiku

    Dataiku is an advanced data science and machine learning platform designed to enable teams to build, deploy, and manage AI and analytics projects at scale. It empowers users, from data scientists to business analysts, to collaboratively create data pipelines, develop machine learning models, and prepare data using both visual and coding interfaces. Dataiku supports the entire AI lifecycle, offering tools for data preparation, model training, deployment, and monitoring. The platform also includes integrations for advanced capabilities like generative AI, helping organizations innovate and deploy AI solutions across industries.
  • 6
    Amazon CodeGuru
    Amazon CodeGuru is a developer tool powered by machine learning that provides intelligent recommendations for improving code quality and identifying an application’s most expensive lines of code. Integrate Amazon CodeGuru into your existing software development workflow where you will experience built-in code reviews to detect and optimize the expensive lines of code to reduce costs. Amazon CodeGuru Profiler helps developers find an application’s most expensive lines of code along with specific visualizations and recommendations on how to improve code to save money. Amazon CodeGuru Reviewer uses machine learning to identify critical issues and hard-to-find bugs during application development to improve code quality.
  • 7
    Google Colab
    Google Colab is a free, hosted Jupyter Notebook service that provides cloud-based environments for machine learning, data science, and educational purposes. It offers no-setup, easy access to computational resources such as GPUs and TPUs, making it ideal for users working with data-intensive projects. Colab allows users to run Python code in an interactive, notebook-style environment, share and collaborate on projects, and access extensive pre-built resources for efficient experimentation and learning. Colab also now offers a Data Science Agent automating analysis, from understanding the data to delivering insights in a working Colab notebook (Sequences shortened. Results for illustrative purposes. Data Science Agent may make mistakes.)
  • 8
    Clarifai

    Clarifai

    Clarifai

    Clarifai is a leading AI platform for modeling image, video, text and audio data at scale. Our platform combines computer vision, natural language processing and audio recognition as building blocks for developing better, faster and stronger AI. We help our customers create innovative solutions for visual search, content moderation, aerial surveillance, visual inspection, intelligent document analysis, and more. The platform comes with the broadest repository of pre-trained, out-of-the-box AI models built with millions of inputs and context. Our models give you a head start; extending your own custom AI models. Clarifai Community builds upon this and offers 1000s of pre-trained models and workflows from Clarifai and other leading AI builders. Users can build and share models with other community members. Founded in 2013 by Matt Zeiler, Ph.D., Clarifai has been recognized by leading analysts, IDC, Forrester and Gartner, as a leading computer vision AI platform. Visit clarifai.com
    Starting Price: $0
  • 9
    Deepnote

    Deepnote

    Deepnote

    Deepnote is building the best data science notebook for teams. In the notebook, users can connect their data, explore, and analyze it with real-time collaboration and version control. Users can easily share project links with team collaborators, or with end-users to present polished assets. All of this is done through a powerful, browser-based UI that runs in the cloud. We built Deepnote because data scientists don't work alone. Features: - Sharing notebooks and projects via URL - Inviting others to view, comment and collaborate, with version control - Publishing notebooks with visualizations for presentations - Sharing datasets between projects - Set team permissions to decide who can edit vs view code - Full linux terminal access - Code completion - Automatic python package management - Importing from github - PostgreSQL DB connection
    Starting Price: Free
  • 10
    Dagster

    Dagster

    Dagster Labs

    Dagster is a next-generation orchestration platform for the development, production, and observation of data assets. Unlike other data orchestration solutions, Dagster provides you with an end-to-end development lifecycle. Dagster gives you control over your disparate data tools and empowers you to build, test, deploy, run, and iterate on your data pipelines. It makes you and your data teams more productive, your operations more robust, and puts you in complete control of your data processes as you scale. Dagster brings a declarative approach to the engineering of data pipelines. Your team defines the data assets required, quickly assessing their status and resolving any discrepancies. An assets-based model is clearer than a tasks-based one and becomes a unifying abstraction across the whole workflow.
    Starting Price: $0
  • 11
    Opsani

    Opsani

    Opsani

    We are the only solution on the market that autonomously tunes applications at scale, either for a single application or across the entire service delivery platform. Opsani rightsizes your application autonomously so your cloud application works harder and leaner so you don’t have to. Opsani COaaS maximizes cloud workload performance and efficiency using the latest in AI and Machine Learning to continuously reconfigure and tune with every code release, load profile change, and infrastructure upgrade. We accomplish this while integrating easily with either a single app or across your service delivery platform while also scaling autonomously across 1000’s of services. Opsani allows for you to solve for all three autonomously without compromise. Reduce costs up to 71% by leveraging Opsani's AI algorithms. Opsani optimization continuously evaluates trillions of configuration permutations and pinpoints the best combinations of resources and parameter settings.
    Starting Price: $500 per month
  • 12
    Gradient

    Gradient

    Gradient

    Explore a new library or dataset in a notebook. Automate preprocessing, training, or testing with a 2orkflow. Bring your application to life with a deployment. Use notebooks, workflows, and deployments together or independently. Compatible with everything. Gradient supports all major frameworks and libraries. Gradient is powered by Paperspace's world-class GPU instances. Move faster with source control integration. Connect to GitHub to manage all your work & compute resources with git. Launch a GPU-enabled Jupyter Notebook from your browser in seconds. Use any library or framework. Easily invite collaborators or share a public link. A simple cloud workspace that runs on free GPUs. Get started in seconds with a notebook environment that's easy to use and share. Perfect for ML developers. A powerful no-fuss environment with loads of features that just works. Choose a pre-built template or bring your own. Try a free GPU!
    Starting Price: $8 per month
  • 13
    Giskard

    Giskard

    Giskard

    Giskard provides interfaces for AI & Business teams to evaluate and test ML models through automated tests and collaborative feedback from all stakeholders. Giskard speeds up teamwork to validate ML models and gives you peace of mind to eliminate risks of regression, drift, and bias before deploying ML models to production.
    Starting Price: $0
  • 14
    InsightFinder

    InsightFinder

    InsightFinder

    InsightFinder Unified Intelligence Engine (UIE) platform provides human-centered AI solutions for identifying incident root causes, and predicting and preventing production incidents. Powered by patented self-tuning unsupervised machine learning, InsightFinder continuously learns from metric time series, logs, traces, and triage threads from SREs and DevOps Engineers to bubble up root causes and predict incidents from the source. Companies of all sizes have embraced the platform and seen that business-impacting incidents can be predicted hours ahead with clearly pinpointed root causes. Survey a comprehensive overview of your IT Ops ecosystem, including patterns, trends, and team activities. Also view calculations that demonstrate overall downtime savings, cost of labor savings, and number of incidents resolved.
    Starting Price: $2.5 per core per month
  • 15
    TrueFoundry

    TrueFoundry

    TrueFoundry

    TrueFoundry is a Cloud-native Machine Learning Training and Deployment PaaS on top of Kubernetes that enables Machine learning teams to train and Deploy models at the speed of Big Tech with 100% reliability and scalability - allowing them to save cost and release Models to production faster. We abstract out the Kubernetes for Data Scientists and enable them to operate in a way they are comfortable. It also allows teams to deploy and fine-tune large language models seamlessly with full security and cost optimization. TrueFoundry is open-ended, API Driven and integrates with the internal systems, deploys on a company's internal infrastructure and ensures complete Data Privacy and DevSecOps practices.
    Starting Price: $5 per month
  • 16
    ZenML

    ZenML

    ZenML

    Simplify your MLOps pipelines. Manage, deploy, and scale on any infrastructure with ZenML. ZenML is completely free and open-source. See the magic with just two simple commands. Set up ZenML in a matter of minutes, and start with all the tools you already use. ZenML standard interfaces ensure that your tools work together seamlessly. Gradually scale up your MLOps stack by switching out components whenever your training or deployment requirements change. Keep up with the latest changes in the MLOps world and easily integrate any new developments. Define simple and clear ML workflows without wasting time on boilerplate tooling or infrastructure code. Write portable ML code and switch from experimentation to production in seconds. Manage all your favorite MLOps tools in one place with ZenML's plug-and-play integrations. Prevent vendor lock-in by writing extensible, tooling-agnostic, and infrastructure-agnostic code.
    Starting Price: Free
  • 17
    Deep Infra

    Deep Infra

    Deep Infra

    Powerful, self-serve machine learning platform where you can turn models into scalable APIs in just a few clicks. Sign up for Deep Infra account using GitHub or log in using GitHub. Choose among hundreds of the most popular ML models. Use a simple rest API to call your model. Deploy models to production faster and cheaper with our serverless GPUs than developing the infrastructure yourself. We have different pricing models depending on the model used. Some of our language models offer per-token pricing. Most other models are billed for inference execution time. With this pricing model, you only pay for what you use. There are no long-term contracts or upfront costs, and you can easily scale up and down as your business needs change. All models run on A100 GPUs, optimized for inference performance and low latency. Our system will automatically scale the model based on your needs.
    Starting Price: $0.70 per 1M input tokens
  • 18
    AIxBlock

    AIxBlock

    AIxBlock

    AIxBlock: The first unified and decentralized platform for end-to-end AI development and workflow automation - built natively on MCP. AIxBlock is a MCP-based, decentralized end-to-end AI development and workflow automation platform purpose-built for AI engineer teams. It empowers users to build, train, deploy AI models and build AI automation workflows using those models through a unified environment that integrates decentralized compute, models, datasets, and labeling resources - all at a fraction of the traditional cost. AIxBlock is the modular AI ecosystem - purpose-built for custom model creation, workflow automation, and open interoperability across MCP client tools like Cursor, Claude, WindSurf, etc.
    Starting Price: $19 per month
  • 19
    MLJAR Studio
    It's a desktop app with Jupyter Notebook and Python built in, installed with just one click. It includes interactive code snippets and an AI assistant to make coding faster and easier, perfect for data science projects. We manually hand crafted over 100 interactive code recipes that you can use in your Data Science projects. Code recipes detect packages available in the current environment. Install needed modules with 1-click, literally. You can create and interact with all variables available in your Python session. Interactive recipes speed-up your work. AI Assistant has access to your current Python session, variables and modules. Broad context makes it smart. Our AI Assistant was designed to solve data problems with Python programming language. It can help you with plots, data loading, data wrangling, Machine Learning and more. Use AI to quickly solve issues with code, just click Fix button. The AI assistant will analyze the error and propose the solution.
    Starting Price: $20 per month
  • 20
    Iterative

    Iterative

    Iterative

    AI teams face challenges that require new technologies. We build these technologies. Existing data warehouses and data lakes do not fit unstructured datasets like text, images, and videos. AI hand in hand with software development. Built with data scientists, ML engineers, and data engineers in mind. Don’t reinvent the wheel! Fast and cost‑efficient path to production. Your data is always stored by you. Your models are trained on your machines. Existing data warehouses and data lakes do not fit unstructured datasets like text, images, and videos. AI teams face challenges that require new technologies. We build these technologies. Studio is an extension of GitHub, GitLab or BitBucket. Sign up for the online SaaS version or contact us to get on-premise installation
  • 21
    Launchable

    Launchable

    Launchable

    You can have the best developers in the world, but every test is making them slower. 80% of your software tests are pointless. The problem is you don't know which 80%. We find the right 20% using your data so that you can ship faster. We have shrink-wrapped predictive test selection, a machine learning-based approach being used at companies like Facebook so that it can be used by any company. We support multiple languages, test runners, and CI systems. Just bring Git to the table. Launchable uses machine learning to analyze your test failures and source code. It doesn't rely on code syntax analysis. This means it's trivial for Launchable to add support for almost any file-based programming language. It also means we can scale across teams and projects with different languages and tools. Out of the box, we currently support Python, Ruby, Java, JavaScript, Go, C, and C++, and we regularly add support for new languages.
  • 22
    Hex

    Hex

    Hex

    Hex brings together the best of notebooks, BI, and docs into a seamless, collaborative UI. Hex is a modern Data Workspace. It makes it easy to connect to data, analyze it in collaborative SQL and Python-powered notebooks, and share work as interactive data apps and stories. Your default landing page in Hex is the Projects page. You can quickly find projects you created, as well as those shared with you and your workspace. The outline provides an easy-to-browse overview of all the cells in a project's Logic View. Every cell in the outline lists the variables it defines, and cells that return a displayed output (chart cells, Input Parameters, markdown cells, etc.) display a preview of that output. You can click any cell in the outline to automatically jump to that position in the logic.
    Starting Price: $24 per user per month
  • 23
    Chalk

    Chalk

    Chalk

    Powerful data engineering workflows, without the infrastructure headaches. Complex streaming, scheduling, and data backfill pipelines, are all defined in simple, composable Python. Make ETL a thing of the past, fetch all of your data in real-time, no matter how complex. Incorporate deep learning and LLMs into decisions alongside structured business data. Make better predictions with fresher data, don’t pay vendors to pre-fetch data you don’t use, and query data just in time for online predictions. Experiment in Jupyter, then deploy to production. Prevent train-serve skew and create new data workflows in milliseconds. Instantly monitor all of your data workflows in real-time; track usage, and data quality effortlessly. Know everything you computed and data replay anything. Integrate with the tools you already use and deploy to your own infrastructure. Decide and enforce withdrawal limits with custom hold times.
    Starting Price: Free
  • 24
    Zerve AI

    Zerve AI

    Zerve AI

    Merging the best of a notebook and an IDE into one integrated coding environment, experts can explore their data and write stable code at the same time with fully automated cloud infrastructure. Zerve’s data science development environment gives data science and ML teams a unified space to explore, collaborate, build, and deploy data science & AI projects like never before. Zerve offers true language interoperability, meaning that as well as being able to use Python, R, SQL, or Markdown all in the same canvas, users can connect these code blocks to each other. No more long-running code blocks or containers, with Zerve enjoying unlimited parallelization at any stage of the development journey. Analysis artifacts are automatically serialized, versioned, stored, and preserved for later use, meaning easily changing a step in the data flow without needing to rerun any preceding steps. Fine-grained selection of compute resources and extra memory for complex data transformation.
  • 25
    Gretel

    Gretel

    Gretel.ai

    Privacy engineering tools delivered to you as APIs. Synthesize and transform data in minutes. Build trust with your users and community. Gretel’s APIs grant immediate access to creating anonymized or synthetic datasets so you can work safely with data while preserving privacy. Keeping the pace with development velocity requires faster access to data. Gretel is accelerating access to data with data privacy tools that bypass blockers and fuel Machine Learning and AI applications. Keep your data contained by running Gretel containers in your own environment or scale out workloads to the cloud in seconds with Gretel Cloud runners. Using our cloud GPUs makes it radically more effortless for developers to train and generate synthetic data. Scale workloads automatically with no infrastructure to set up and manage. Invite team members to collaborate on cloud projects and share data across teams.
  • 26
    Zepl

    Zepl

    Zepl

    Sync, search and manage all the work across your data science team. Zepl’s powerful search lets you discover and reuse models and code. Use Zepl’s enterprise collaboration platform to query data from Snowflake, Athena or Redshift and build your models in Python. Use pivoting and dynamic forms for enhanced interactions with your data using heatmap, radar, and Sankey charts. Zepl creates a new container every time you run your notebook, providing you with the same image each time you run your models. Invite team members to join a shared space and work together in real time or simply leave their comments on a notebook. Use fine-grained access controls to share your work. Allow others have read, edit, and run access as well as enable collaboration and distribution. All notebooks are auto-saved and versioned. You can name, manage and roll back all versions through an easy-to-use interface, and export seamlessly into Github.
  • 27
    Amazon SageMaker Model Building
    Amazon SageMaker provides all the tools and libraries you need to build ML models, the process of iteratively trying different algorithms and evaluating their accuracy to find the best one for your use case. In Amazon SageMaker you can pick different algorithms, including over 15 that are built-in and optimized for SageMaker, and use over 150 pre-built models from popular model zoos available with a few clicks. SageMaker also offers a variety of model-building tools including Amazon SageMaker Studio Notebooks and RStudio where you can run ML models on a small scale to see results and view reports on their performance so you can come up with high-quality working prototypes. Amazon SageMaker Studio Notebooks help you build ML models faster and collaborate with your team. Amazon SageMaker Studio notebooks provide one-click Jupyter notebooks that you can start working within seconds. Amazon SageMaker also enables one-click sharing of notebooks.
  • 28
    Amazon SageMaker Studio Lab
    Amazon SageMaker Studio Lab is a free machine learning (ML) development environment that provides the compute, storage (up to 15GB), and security, all at no cost, for anyone to learn and experiment with ML. All you need to get started is a valid email address, you don’t need to configure infrastructure or manage identity and access or even sign up for an AWS account. SageMaker Studio Lab accelerates model building through GitHub integration, and it comes preconfigured with the most popular ML tools, frameworks, and libraries to get you started immediately. SageMaker Studio Lab automatically saves your work so you don’t need to restart in between sessions. It’s as easy as closing your laptop and coming back later. Free machine learning development environment that provides the computing, storage, and security to learn and experiment with ML. GitHub integration and preconfigured with the most popular ML tools, frameworks, and libraries so you can get started immediately.
  • 29
    Modelbit

    Modelbit

    Modelbit

    Don't change your day-to-day, works with Jupyter Notebooks and any other Python environment. Simply call modelbi.deploy to deploy your model, and let Modelbit carry it — and all its dependencies — to production. ML models deployed with Modelbit can be called directly from your warehouse as easily as calling a SQL function. They can also be called as a REST endpoint directly from your product. Modelbit is backed by your git repo. GitHub, GitLab, or home grown. Code review. CI/CD pipelines. PRs and merge requests. Bring your whole git workflow to your Python ML models. Modelbit integrates seamlessly with Hex, DeepNote, Noteable and more. Take your model straight from your favorite cloud notebook into production. Sick of VPC configurations and IAM roles? Seamlessly redeploy your SageMaker models to Modelbit. Immediately reap the benefits of Modelbit's platform with the models you've already built.
  • 30
    MLBox

    MLBox

    Axel ARONIO DE ROMBLAY

    MLBox is a powerful Automated Machine Learning python library. It provides the following features fast reading and distributed data preprocessing/cleaning/formatting, highly robust feature selection and leak detection, accurate hyper-parameter optimization in high-dimensional space, state-of-the art predictive models for classification and regression (Deep Learning, Stacking, LightGBM), and prediction with models interpretation. MLBox main package contains 3 sub-packages: preprocessing, optimization and prediction. Each one of them are respectively aimed at reading and preprocessing data, testing or optimizing a wide range of learners and predicting the target on a test dataset.
  • Previous
  • You're on page 1
  • 2
  • Next