Best Machine Learning Software for Amazon Web Services (AWS) - Page 3

Compare the Top Machine Learning Software that integrates with Amazon Web Services (AWS) as of July 2025 - Page 3

This a list of Machine Learning software that integrates with Amazon Web Services (AWS). Use the filters on the left to add additional filters for products that have integrations with Amazon Web Services (AWS). View the products that work with Amazon Web Services (AWS) in the table below.

  • 1
    Amazon SageMaker JumpStart
    Amazon SageMaker JumpStart is a machine learning (ML) hub that can help you accelerate your ML journey. With SageMaker JumpStart, you can access built-in algorithms with pretrained models from model hubs, pretrained foundation models to help you perform tasks such as article summarization and image generation, and prebuilt solutions to solve common use cases. In addition, you can share ML artifacts, including ML models and notebooks, within your organization to accelerate ML model building and deployment. SageMaker JumpStart provides hundreds of built-in algorithms with pretrained models from model hubs, including TensorFlow Hub, PyTorch Hub, HuggingFace, and MxNet GluonCV. You can also access built-in algorithms using the SageMaker Python SDK. Built-in algorithms cover common ML tasks, such as data classifications (image, text, tabular) and sentiment analysis.
  • 2
    Amazon SageMaker Autopilot
    Amazon SageMaker Autopilot eliminates the heavy lifting of building ML models. You simply provide a tabular dataset and select the target column to predict, and SageMaker Autopilot will automatically explore different solutions to find the best model. You then can directly deploy the model to production with just one click or iterate on the recommended solutions to further improve the model quality. You can use Amazon SageMaker Autopilot even when you have missing data. SageMaker Autopilot automatically fills in the missing data, provides statistical insights about columns in your dataset, and automatically extracts information from non-numeric columns, such as date and time information from timestamps.
  • 3
    Amazon SageMaker Model Monitor
    With Amazon SageMaker Model Monitor, you can select the data you would like to monitor and analyze without the need to write any code. SageMaker Model Monitor lets you select data from a menu of options such as prediction output, and captures metadata such as timestamp, model name, and endpoint so you can analyze model predictions based on the metadata. You can specify the sampling rate of data capture as a percentage of overall traffic in the case of high volume real-time predictions, and the data is stored in your own Amazon S3 bucket. You can also encrypt this data, configure fine-grained security, define data retention policies, and implement access control mechanisms for secure access. Amazon SageMaker Model Monitor offers built-in analysis in the form of statistical rules, to detect drifts in data and model quality. You can also write custom rules and specify thresholds for each rule.
  • 4
    Amazon SageMaker Pipelines
    Using Amazon SageMaker Pipelines, you can create ML workflows with an easy-to-use Python SDK, and then visualize and manage your workflow using Amazon SageMaker Studio. You can be more efficient and scale faster by storing and reusing the workflow steps you create in SageMaker Pipelines. You can also get started quickly with built-in templates to build, test, register, and deploy models so you can get started with CI/CD in your ML environment quickly. Many customers have hundreds of workflows, each with a different version of the same model. With the SageMaker Pipelines model registry, you can track these versions in a central repository where it is easy to choose the right model for deployment based on your business requirements. You can use SageMaker Studio to browse and discover models, or you can access them through the SageMaker Python SDK.
  • 5
    Amazon SageMaker Model Deployment
    Amazon SageMaker makes it easy to deploy ML models to make predictions (also known as inference) at the best price-performance for any use case. It provides a broad selection of ML infrastructure and model deployment options to help meet all your ML inference needs. It is a fully managed service and integrates with MLOps tools, so you can scale your model deployment, reduce inference costs, manage models more effectively in production, and reduce operational burden. From low latency (a few milliseconds) and high throughput (hundreds of thousands of requests per second) to long-running inference for use cases such as natural language processing and computer vision, you can use Amazon SageMaker for all your inference needs.
  • 6
    MosaicML

    MosaicML

    MosaicML

    Train and serve large AI models at scale with a single command. Point to your S3 bucket and go. We handle the rest, orchestration, efficiency, node failures, and infrastructure. Simple and scalable. MosaicML enables you to easily train and deploy large AI models on your data, in your secure environment. Stay on the cutting edge with our latest recipes, techniques, and foundation models. Developed and rigorously tested by our research team. With a few simple steps, deploy inside your private cloud. Your data and models never leave your firewalls. Start in one cloud, and continue on another, without skipping a beat. Own the model that's trained on your own data. Introspect and better explain the model decisions. Filter the content and data based on your business needs. Seamlessly integrate with your existing data pipelines, experiment trackers, and other tools. We are fully interoperable, cloud-agnostic, and enterprise proved.
  • 7
    UnionML

    UnionML

    Union

    Creating ML apps should be simple and frictionless. UnionML is an open-source Python framework built on top of Flyte™, unifying the complex ecosystem of ML tools into a single interface. Combine the tools that you love using a simple, standardized API so you can stop writing so much boilerplate and focus on what matters: the data and the models that learn from them. Fit the rich ecosystem of tools and frameworks into a common protocol for machine learning. Using industry-standard machine learning methods, implement endpoints for fetching data, training models, serving predictions (and much more) to write a complete ML stack in one place. ‍ Data science, ML engineering, and MLOps practitioners can all gather around UnionML apps as a way of defining a single source of truth about your ML system’s behavior.
  • 8
    Vaex

    Vaex

    Vaex

    At Vaex.io we aim to democratize big data and make it available to anyone, on any machine, at any scale. Cut development time by 80%, your prototype is your solution. Create automatic pipelines for any model. Empower your data scientists. Turn any laptop into a big data powerhouse, no clusters, no engineers. We provide reliable and fast data driven solutions. With our state-of-the-art technology we build and deploy machine learning models faster than anyone on the market. Turn your data scientist into big data engineers. We provide comprehensive training of your employees, enabling you to take full advantage of our technology. Combines memory mapping, a sophisticated expression system, and fast out-of-core algorithms. Efficiently visualize and explore big datasets, and build machine learning models on a single machine.
  • 9
    AWS Neuron

    AWS Neuron

    Amazon Web Services

    It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP).
  • 10
    Qualdo

    Qualdo

    Qualdo

    We are a leader in Data Quality & ML Model for enterprises adopting a multi-cloud, ML and modern data management ecosystem. Algorithms to track Data Anomalies in Azure, GCP & AWS databases. Measure and monitor data issues from all your cloud database management tools and data silos, using a single, centralized tool. Quality is in the eye of the beholder. Data issues have different implications depending on where you sit in the enterprise. Qualdo is a pioneer in organizing all data quality management issues through the lens of multiple enterprise stakeholders, presenting a unified view in a consumable format. Deploy powerful auto-resolution algorithms to track and isolate critical data issues. Take advantage of robust reports and alerts to manage your enterprise regulatory compliance.
  • 11
    3LC

    3LC

    3LC

    Light up the black box and pip install 3LC to gain the clarity you need to make meaningful changes to your models in moments. Remove the guesswork from your model training and iterate fast. Collect per-sample metrics and visualize them in your browser. Analyze your training and eliminate issues in your dataset. Model-guided, interactive data debugging and enhancements. Find important or inefficient samples. Understand what samples work and where your model struggles. Improve your model in different ways by weighting your data. Make sparse, non-destructive edits to individual samples or in a batch. Maintain a lineage of all changes and restore any previous revisions. Dive deeper than standard experiment trackers with per-sample per epoch metrics and data tracking. Aggregate metrics by sample features, rather than just epoch, to spot hidden trends. Tie each training run to a specific dataset revision for full reproducibility.
  • 12
    Simplismart

    Simplismart

    Simplismart

    Fine-tune and deploy AI models with Simplismart's fastest inference engine. Integrate with AWS/Azure/GCP and many more cloud providers for simple, scalable, cost-effective deployment. Import open source models from popular online repositories or deploy your own custom model. Leverage your own cloud resources or let Simplismart host your model. With Simplismart, you can go far beyond AI model deployment. You can train, deploy, and observe any ML model and realize increased inference speeds at lower costs. Import any dataset and fine-tune open-source or custom models rapidly. Run multiple training experiments in parallel efficiently to speed up your workflow. Deploy any model on our endpoints or your own VPC/premise and see greater performance at lower costs. Streamlined and intuitive deployment is now a reality. Monitor GPU utilization and all your node clusters in one dashboard. Detect any resource constraints and model inefficiencies on the go.
  • 13
    SquareML

    SquareML

    SquareML

    SquareML is a no-code machine learning platform designed to democratize access to advanced data analytics and predictive modeling, particularly in the healthcare sector. It enables users, regardless of technical expertise, to harness machine learning capabilities without extensive coding knowledge. The platform specializes in data ingestion from multiple sources, including electronic health records, claims databases, medical devices, and health information exchanges. Key features include a no-code data science lifecycle, generative AI models for healthcare, unstructured data conversion, diverse machine learning models for predicting patient outcomes and disease progression, a library of pre-built models and algorithms, and seamless integration with various healthcare data sources. SquareML aims to streamline data processes, enhance diagnostic accuracy, and improve patient care outcomes by providing AI-powered insights.
  • 14
    Amazon EC2 Capacity Blocks for ML
    Amazon EC2 Capacity Blocks for ML enable you to reserve accelerated compute instances in Amazon EC2 UltraClusters for your machine learning workloads. This service supports Amazon EC2 P5en, P5e, P5, and P4d instances, powered by NVIDIA H200, H100, and A100 Tensor Core GPUs, respectively, as well as Trn2 and Trn1 instances powered by AWS Trainium. You can reserve these instances for up to six months in cluster sizes ranging from one to 64 instances (512 GPUs or 1,024 Trainium chips), providing flexibility for various ML workloads. Reservations can be made up to eight weeks in advance. By colocating in Amazon EC2 UltraClusters, Capacity Blocks offer low-latency, high-throughput network connectivity, facilitating efficient distributed training. This setup ensures predictable access to high-performance computing resources, allowing you to plan ML development confidently, run experiments, build prototypes, and accommodate future surges in demand for ML applications.
  • 15
    Amazon EC2 UltraClusters
    Amazon EC2 UltraClusters enable you to scale to thousands of GPUs or purpose-built machine learning accelerators, such as AWS Trainium, providing on-demand access to supercomputing-class performance. They democratize supercomputing for ML, generative AI, and high-performance computing developers through a simple pay-as-you-go model without setup or maintenance costs. UltraClusters consist of thousands of accelerated EC2 instances co-located in a given AWS Availability Zone, interconnected using Elastic Fabric Adapter (EFA) networking in a petabit-scale nonblocking network. This architecture offers high-performance networking and access to Amazon FSx for Lustre, a fully managed shared storage built on a high-performance parallel file system, enabling rapid processing of massive datasets with sub-millisecond latencies. EC2 UltraClusters provide scale-out capabilities for distributed ML training and tightly coupled HPC workloads, reducing training times.
  • 16
    Amazon EC2 Trn2 Instances
    Amazon EC2 Trn2 instances, powered by AWS Trainium2 chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and diffusion models. They offer up to 50% cost-to-train savings over comparable Amazon EC2 instances. Trn2 instances support up to 16 Trainium2 accelerators, providing up to 3 petaflops of FP16/BF16 compute power and 512 GB of high-bandwidth memory. To facilitate efficient data and model parallelism, Trn2 instances feature NeuronLink, a high-speed, nonblocking interconnect, and support up to 1600 Gbps of second-generation Elastic Fabric Adapter (EFAv2) network bandwidth. They are deployed in EC2 UltraClusters, enabling scaling up to 30,000 Trainium2 chips interconnected with a nonblocking petabit-scale network, delivering 6 exaflops of compute performance. The AWS Neuron SDK integrates natively with popular machine learning frameworks like PyTorch and TensorFlow.
  • 17
    AWS Elastic Fabric Adapter (EFA)
    Elastic Fabric Adapter (EFA) is a network interface for Amazon EC2 instances that enables customers to run applications requiring high levels of inter-node communications at scale on AWS. Its custom-built operating system (OS) bypass hardware interface enhances the performance of inter-instance communications, which is critical to scaling these applications. With EFA, High-Performance Computing (HPC) applications using the Message Passing Interface (MPI) and Machine Learning (ML) applications using NVIDIA Collective Communications Library (NCCL) can scale to thousands of CPUs or GPUs. As a result, you get the application performance of on-premises HPC clusters with the on-demand elasticity and flexibility of the AWS cloud. EFA is available as an optional EC2 networking feature that you can enable on any supported EC2 instance at no additional cost. Plus, it works with the most commonly used interfaces, APIs, and libraries for inter-node communications.
  • 18
    Folio3

    Folio3

    Folio3 Software

    Folio3 machine learning company has a team of dedicated Data Scientists and Consultants that have delivered end-to-end projects related to machine learning, natural language processing, computer vision and predictive analysis. Artificial Intelligence and Machine Learning algorithms have enabled companies to utilize highly-customized solutions equipped with advanced Machine Learning capabilities. Computer vision technology has scaled up visual data analysis, introduced new image- based functionalities and transformed the way companies from various verticals utilize visual content. Predictive analytics solutions offered by Folio3 produce effective and fast results, enabling you to identify opportunities and anomalies in your business processes and strategy.
  • 19
    SquareFactory

    SquareFactory

    SquareFactory

    End-to-end project, model and hosting management platform, which allows companies to convert data and algorithms into holistic, execution-ready AI-strategies. Build, train and manage models securely with ease. Create products that consume AI models from anywhere, any time. Minimize risks of AI investments, while increasing strategic flexibility. Completely automated model testing, evaluation deployment, scaling and hardware load balancing. From real-time, low-latency, high-throughput inference to batch, long-running inference. Pay-per-second-of-use model, with an SLA, and full governance, monitoring and auditing tools. Intuitive interface that acts as a unified hub for managing projects, creating and visualizing datasets, and training models via collaborative and reproducible workflows.
  • 20
    Sagify

    Sagify

    Sagify

    Sagify complements AWS Sagemaker by hiding all its low-level details so that you can focus 100% on Machine Learning. Sagemaker is the ML engine and Sagify is the data science-friendly interface. You just need to implement 2 functions, a train and a predict in order to train, tune and deploy hundreds of ML models. Manage your ML models from one place without dealing with low level engineering tasks. No more flaky ML pipelines. Sagify offers 100% reliable training and deployment on AWS. Train, tune and deploy hundreds of ML models by implementing just 2 functions.
  • 21
    Credo AI

    Credo AI

    Credo AI

    Standardize your AI governance efforts across diverse stakeholders, ensure regulatory readiness of your governance processes, and measure and manage your AI risks and compliance. Go from fragmented teams and processes to a centralized repository of trusted governance that makes it easy to ensure all of your AI/ML projects are being governed effectively. Stay up-to-date with the latest regulations and standards with AI Policy Packs that meet current and emerging regulations. Credo AI is an intelligence layer that sits on top of your AI infrastructure and translates technical artifacts into actionable risk & compliance insights for product leaders, data scientists, and governance teams. Credo AI is an intelligence layer that sits on top of your technical and business infrastructure and translates technical artifacts into risk and compliance scores.
  • 22
    CognitiveScale Cortex AI
    Developing AI solutions requires an engineering approach that is resilient, open and repeatable to ensure necessary quality and agility is achieved. Until today these efforts are missing the foundation to address these challenges amid a sea of point tools and fast changing models and data. Collaborative developer platform for automating development and control of AI applications across multiple personas. Derive hyper-detailed customer profiles from enterprise data to predict behaviors in real-time and at scale. Generate AI-powered models designed to continuously learn and achieve clearly defined business outcomes. Enables organizations to explain and prove compliance with applicable rules and regulations. CognitiveScale's Cortex AI Platform addresses enterprise AI use cases through modular platform offerings. Our customers consume and leverage its capabilities as microservices within their enterprise AI initiatives.
  • 23
    CentML

    CentML

    CentML

    CentML accelerates Machine Learning workloads by optimizing models to utilize hardware accelerators, like GPUs or TPUs, more efficiently and without affecting model accuracy. Our technology boosts training and inference speed, lowers compute costs, increases your AI-powered product margins, and boosts your engineering team's productivity. Software is no better than the team who built it. Our team is stacked with world-class machine learning and system researchers and engineers. Focus on your AI products and let our technology take care of optimum performance and lower cost for you.
  • 24
    Vidora Cortex
    Attempting to build Machine Learning Pipelines internally often takes longer and costs more than planned. And worse, Gartner shows that more than 80% of AI Projects will fail. With Cortex, we help teams get up and running with machine learning faster and cheaper than alternatives, all while putting data to use to improve business outcomes. Empower every team with the ability to create their own AI Predictions. No longer will you need to wait to hire a team and build out costly infrastructure. With Cortex you can create predictions from the data you already have, all through an easy to use web interface. Now everyone is a Data Scientist! Cortex automates the process of turning raw data into Machine Learning Pipelines, eliminating the hardest and most time consuming aspects of AI. These predictions stay accurate and up to date by continuously ingesting new data and updating the underlying model automatically – no human intervention needed.