Business Software for TensorFlow - Page 4

Top Software that integrates with TensorFlow as of July 2025 - Page 4

  • 1
    Amazon EC2 Trn1 Instances
    Amazon Elastic Compute Cloud (EC2) Trn1 instances, powered by AWS Trainium chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and latent diffusion models. Trn1 instances offer up to 50% cost-to-train savings over other comparable Amazon EC2 instances. You can use Trn1 instances to train 100B+ parameter DL and generative AI models across a broad set of applications, such as text summarization, code generation, question answering, image and video generation, recommendation, and fraud detection. The AWS Neuron SDK helps developers train models on AWS Trainium (and deploy models on the AWS Inferentia chips). It integrates natively with frameworks such as PyTorch and TensorFlow so that you can continue using your existing code and workflows to train models on Trn1 instances.
    Starting Price: $1.34 per hour
  • 2
    Amazon EC2 Inf1 Instances
    Amazon EC2 Inf1 instances are purpose-built to deliver high-performance and cost-effective machine learning inference. They provide up to 2.3 times higher throughput and up to 70% lower cost per inference compared to other Amazon EC2 instances. Powered by up to 16 AWS Inferentia chips, ML inference accelerators designed by AWS, Inf1 instances also feature 2nd generation Intel Xeon Scalable processors and offer up to 100 Gbps networking bandwidth to support large-scale ML applications. These instances are ideal for deploying applications such as search engines, recommendation systems, computer vision, speech recognition, natural language processing, personalization, and fraud detection. Developers can deploy their ML models on Inf1 instances using the AWS Neuron SDK, which integrates with popular ML frameworks like TensorFlow, PyTorch, and Apache MXNet, allowing for seamless migration with minimal code changes.
    Starting Price: $0.228 per hour
  • 3
    Amazon EC2 G5 Instances
    Amazon EC2 G5 instances are the latest generation of NVIDIA GPU-based instances that can be used for a wide range of graphics-intensive and machine-learning use cases. They deliver up to 3x better performance for graphics-intensive applications and machine learning inference and up to 3.3x higher performance for machine learning training compared to Amazon EC2 G4dn instances. Customers can use G5 instances for graphics-intensive applications such as remote workstations, video rendering, and gaming to produce high-fidelity graphics in real time. With G5 instances, machine learning customers get high-performance and cost-efficient infrastructure to train and deploy larger and more sophisticated models for natural language processing, computer vision, and recommender engine use cases. G5 instances deliver up to 3x higher graphics performance and up to 40% better price performance than G4dn instances. They have more ray tracing cores than any other GPU-based EC2 instance.
    Starting Price: $1.006 per hour
  • 4
    Amazon EC2 P4 Instances
    Amazon EC2 P4d instances deliver high performance for machine learning training and high-performance computing applications in the cloud. Powered by NVIDIA A100 Tensor Core GPUs, they offer industry-leading throughput and low-latency networking, supporting 400 Gbps instance networking. P4d instances provide up to 60% lower cost to train ML models, with an average of 2.5x better performance for deep learning models compared to previous-generation P3 and P3dn instances. Deployed in hyperscale clusters called Amazon EC2 UltraClusters, P4d instances combine high-performance computing, networking, and storage, enabling users to scale from a few to thousands of NVIDIA A100 GPUs based on project needs. Researchers, data scientists, and developers can utilize P4d instances to train ML models for use cases such as natural language processing, object detection and classification, and recommendation engines, as well as to run HPC applications like pharmaceutical discovery and more.
    Starting Price: $11.57 per hour
  • 5
    AWS Marketplace
    AWS Marketplace is a curated digital catalog that enables customers to discover, purchase, deploy, and manage third-party software, data products, and services directly within the AWS ecosystem. It provides access to thousands of listings across categories like security, machine learning, business applications, and DevOps tools. With flexible pricing models such as pay-as-you-go, annual subscriptions, and free trials, AWS Marketplace simplifies procurement and billing by integrating costs into a single AWS invoice. It also supports rapid deployment with pre-configured software that can be launched on AWS infrastructure. This streamlined approach allows businesses to accelerate innovation, reduce time-to-market, and maintain better control over software usage and costs.
  • 6
    NeevCloud

    NeevCloud

    NeevCloud

    NeevCloud delivers cutting-edge GPU cloud solutions powered by NVIDIA GPUs like the H200, H100, GB200 NVL72, and many more offering unmatched performance for AI, HPC, and data-intensive workloads. Scale dynamically with flexible pricing and energy-efficient GPUs that reduce costs while maximizing output. Ideal for AI model training, scientific research, media production, and real-time analytics, NeevCloud ensures seamless integration and global accessibility. Experience unparalleled speed, scalability, and sustainability with NeevCloud GPU cloud solutions.
    Starting Price: $1.69/GPU/hour
  • 7
    Dragonfly 3D World
    Dragonfly 3D World by Object Research Systems (ORS) is a comprehensive software platform for multidimensional image visualization, analysis, and collaboration in scientific and industrial fields. It provides powerful tools to visualize, process, and interpret 2D, 3D, and 4D imaging data acquired through modalities such as CT, MRI, electron microscopy, and more. Dragonfly supports real-time volume rendering, surface rendering, and orthogonal slicing, allowing users to explore complex structures interactively. With its AI integration, users can apply deep learning for image segmentation, classification, and object detection. It offers advanced quantitative analysis tools, including region-of-interest analysis, measurements, and statistical evaluations. Its intuitive graphical user interface enables researchers to build reproducible workflows and perform batch processing.
  • 8
    Huawei Cloud ModelArts
    ​ModelArts is a comprehensive AI development platform provided by Huawei Cloud, designed to streamline the entire AI workflow for developers and data scientists. It offers a full-lifecycle toolchain that includes data preprocessing, semi-automated data labeling, distributed training, automated model building, and flexible deployment options across cloud, edge, and on-premises environments. It supports popular open source AI frameworks such as TensorFlow, PyTorch, and MindSpore, and allows for the integration of custom algorithms tailored to specific needs. ModelArts features an end-to-end development pipeline that enhances collaboration across DataOps, MLOps, and DevOps, boosting development efficiency by up to 50%. It provides cost-effective AI computing resources with diverse specifications, enabling large-scale distributed training and inference acceleration.
  • 9
    E2E Cloud

    E2E Cloud

    ​E2E Networks

    ​E2E Cloud provides advanced cloud solutions tailored for AI and machine learning workloads. We offer access to cutting-edge NVIDIA GPUs, including H200, H100, A100, L40S, and L4, enabling businesses to efficiently run AI/ML applications. Our services encompass GPU-intensive cloud computing, AI/ML platforms like TIR built on Jupyter Notebook, Linux and Windows cloud solutions, storage cloud with automated backups, and cloud solutions with pre-installed frameworks. E2E Networks emphasizes a high-value, top-performance infrastructure, boasting a 90% cost reduction in monthly cloud bills for clients. Our multi-region cloud is designed for performance, reliability, resilience, and security, serving over 15,000 clients. Additional features include block storage, load balancers, object storage, one-click deployment, database-as-a-service, API & CLI access, and a content delivery network.
    Starting Price: $0.012 per hour
  • 10
    Sesterce

    Sesterce

    Sesterce

    Sesterce Cloud offers the seamless and simplest way to launch a GPU Cloud instance, in bare-metal or virtualized mode. Our platform is tailored to allow early-stage teams to collaborate, for training or deploying AI solutions through a large range of NVIDIA and AMD products and optimized pricing, in over 50 regions worldwide. We also offer packaged, turnkey AI solutions for companies that want to rapidly deploy tools to automate their processes, or develop new sources of growth. All with integrated customer support, 99.9% uptime, unlimited storage capacity.
    Starting Price: $0.30/GPU/hr
  • 11
    Nutanix Karbon Platform Services
    Karbon Platform Services (KPS) by Nutanix is a Kubernetes-based multicloud Platform-as-a-Service (PaaS) designed to accelerate the development and deployment of microservices-based applications across any cloud. It offers a rich set of managed services, including Kubernetes applications (Containers-as-a-Service), serverless functions (Functions-as-a-Service), global data pipelines, streaming data and message bus (Kafka-aaS, NATS-aaS), AI services (Tensorflow-aaS, Openvino-aaS), ingress controller and service mesh (nginx/traefik-aaS, Istio-aaS), application monitoring and alerting (Prometheus-aaS), and log forwarding. KPS provides simple, SaaS-based multicloud operations, allowing operators to benefit from simplified operations and uniform application, data, and security lifecycle management, regardless of the underlying cloud. Developers can write applications once and deploy them across any cloud through the SaaS-based application lifecycle manager.
  • 12
    Skyportal

    Skyportal

    Skyportal

    Skyportal is a GPU cloud platform built for AI engineers, offering 50% less cloud costs and 100% GPU performance. It provides a cost-effective GPU infrastructure for machine learning workloads, eliminating unpredictable cloud bills and hidden fees. Skyportal has seamlessly integrated Kubernetes, Slurm, PyTorch, TensorFlow, CUDA, cuDNN, and NVIDIA Drivers, fully optimized for Ubuntu 22.04 LTS and 24.04 LTS, allowing users to focus on innovating and scaling with ease. It offers high-performance NVIDIA H100 and H200 GPUs optimized specifically for ML/AI workloads, with instant scalability and 24/7 expert support from a team that understands ML workflows and optimization. Skyportal's transparent pricing and zero egress fees provide predictable costs for AI infrastructure. Users can share their AI/ML project requirements and goals, deploy models within the infrastructure using familiar tools and frameworks, and scale their infrastructure as needed.
    Starting Price: $2.40 per hour
  • 13
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 14
    ExamRoom.AI
    Online testing has become more common practice versus the traditional classroom environment. Students are actively enrolling into online classes for secondary and postsecondary schooling. Not only is the tuition lower, but the flexibility of testing time and location is attractive. But are all online proctoring services safe and secure against cheating and personal data theft? At ExamRoom.AI, we see the need for increased protection without compromising the integrity of the test or the ease of taking the test. Our experienced team of developers have created a seamless platform for online proctoring and are continuously working to make our system safe and secure for the test takers and for the integrity of the content provided. With the deployment of our own algorithms and the creation of a registration and verification process based on the candidate’s biometrics, through FIDO technology, our clients and candidates can test with confidence knowing that their information is protected.
  • 15
    Deep.BI

    Deep.BI

    Deep BI

    Deep.BI enables Media, Insurance, E-commerce and Banking enterprises to effectively increase revenues by anticipating specific user behaviors then automating actions to convert these users to paying customers and retaining them. Predictive customer data platform with real-time user scoring, based on Deep.BI's next-gen, enterprise data warehouse. We help digital businesses and platforms improve their products, content and distribution. Deep.BI's platform collects extensive data about product usage and content consumption and provides real-time, actionable insights. Real-time, actionable insights are generated within seconds through the Deep.Conveyor data pipeline, available for analysis in the Deep.Explorer business intelligence platform, augmented through the Deep.Score event scoring engine built with custom AI algorithms for your use case, and are ready for automation using the Deep.Conductor high-speed API and AI model serving platform.
  • 16
    Weights & Biases

    Weights & Biases

    Weights & Biases

    Experiment tracking, hyperparameter optimization, model and dataset versioning with Weights & Biases (WandB). Track, compare, and visualize ML experiments with 5 lines of code. Add a few lines to your script, and each time you train a new version of your model, you'll see a new experiment stream live to your dashboard. Optimize models with our massively scalable hyperparameter search tool. Sweeps are lightweight, fast to set up, and plug in to your existing infrastructure for running models. Save every detail of your end-to-end machine learning pipeline — data preparation, data versioning, training, and evaluation. It's never been easier to share project updates. Quickly and easily implement experiment logging by adding just a few lines to your script and start logging results. Our lightweight integration works with any Python script. W&B Weave is here to help developers build and iterate on their AI applications with confidence.
  • 17
    Segments.ai

    Segments.ai

    Segments.ai

    Segments.ai is an advanced data labeling platform that allows users to label data from multiple sensors simultaneously, improving the speed and accuracy of labeling for robotics and autonomous vehicle (AV) applications. It supports 2D and 3D labeling, including point cloud annotation, and enables users to label moving and stationary objects with ease. The platform leverages smart automation tools like batch mode and ML-powered object tracking, streamlining workflows and reducing manual labor. By fusing 2D image data with 3D point cloud data, Segments.ai offers a more efficient and consistent labeling process, ideal for high-volume, multi-sensor projects.
  • 18
    MLflow

    MLflow

    MLflow

    MLflow is an open source platform to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry. MLflow currently offers four components. Record and query experiments: code, data, config, and results. Package data science code in a format to reproduce runs on any platform. Deploy machine learning models in diverse serving environments. Store, annotate, discover, and manage models in a central repository. The MLflow Tracking component is an API and UI for logging parameters, code versions, metrics, and output files when running your machine learning code and for later visualizing the results. MLflow Tracking lets you log and query experiments using Python, REST, R API, and Java API APIs. An MLflow Project is a format for packaging data science code in a reusable and reproducible way, based primarily on conventions. In addition, the Projects component includes an API and command-line tools for running projects.
  • 19
    HPE Ezmeral

    HPE Ezmeral

    Hewlett Packard Enterprise

    Run, manage, control and secure the apps, data and IT that run your business, from edge to cloud. HPE Ezmeral advances digital transformation initiatives by shifting time and resources from IT operations to innovations. Modernize your apps. Simplify your Ops. And harness data to go from insights to impact. Accelerate time-to-value by deploying Kubernetes at scale with integrated persistent data storage for app modernization on bare metal or VMs, in your data center, on any cloud or at the edge. Harness data and get insights faster by operationalizing the end-to-end process to build data pipelines. Bring DevOps agility to the machine learning lifecycle, and deliver a unified data fabric. Boost efficiency and agility in IT Ops with automation and advanced artificial intelligence. And provide security and control to eliminate risk and reduce costs. HPE Ezmeral Container Platform provides an enterprise-grade platform to deploy Kubernetes at scale for a wide range of use cases.
  • 20
    Xilinx

    Xilinx

    Xilinx

    The Xilinx’s AI development platform for AI inference on Xilinx hardware platforms consists of optimized IP, tools, libraries, models, and example designs. It is designed with high efficiency and ease-of-use in mind, unleashing the full potential of AI acceleration on Xilinx FPGA and ACAP. Supports mainstream frameworks and the latest models capable of diverse deep learning tasks. Provides a comprehensive set of pre-optimized models that are ready to deploy on Xilinx devices. You can find the closest model and start re-training for your applications! Provides a powerful open source quantizer that supports pruned and unpruned model quantization, calibration, and fine tuning. The AI profiler provides layer by layer analysis to help with bottlenecks. The AI library offers open source high-level C++ and Python APIs for maximum portability from edge to cloud. Efficient and scalable IP cores can be customized to meet your needs of many different applications.
  • 21
    Jovian

    Jovian

    Jovian

    Start coding instantly with an interactive Jupyter notebook running on the cloud. No installation or setup required. Start with a blank notebook, follow-along with a tutorial or use a starter template. Manage all your projects on Jovian. Just run jovian.commit() to capture snapshots, record versions and generate shareable links for your notebooks. Showcase your best work on your Jovian profile. Feature projects, notebooks, collections, activities and more. Track changes in code, outputs, graphs, tables, logs and more with simple, intutive and visual notebook diffs. Share your work online, or collaborate privately with your team. Let others build upon your experiments & contribute back. Collaborators can discuss and comment on specific parts of your notebooks, with a powerful cell-level commenting inteface. A flexible comparison dashboard lets you sort, filter, archive and do much more to analyze ML experiments & results.
  • 22
    Quantiphi Conversational AI
    Automate the classification and extraction of content from thousands of scanned financial documents with an intelligent virtual assistant. Handle all frequent user requests around account information, credit/debit cards, and other financial services over telephony, chat, and other popular messaging channels. Virtual agents to help customers manage their funds by sending out balance notifications, bill reminders, financial planning tips, and suggestions to save money by analyzing their card transactions. Assist advisors in effectively resolving queries from prospects, existing students, and alumni with an AI-powered virtual agent. Automate administrative tasks, like collecting and analyzing student feedback and responding to emails, to significantly reduce the time and effort involved. Simplify routine tasks like appointment scheduling, refilling subscriptions, and clinical trial matching by deploying virtual assistants.
  • 23
    witboost

    witboost

    Agile Lab

    witboost is a modular, scalable, fast, efficient data management system for your company to truly become data driven, reduce time-to-market, it expenditures and overheads. witboost comprises a series of modules. These are building blocks that can work as standalone solutions to address and solve a single need or problem, or they can be combined to create the perfect data management ecosystem for your company. Each module improves a specific data engineering function and they can be combined to create the perfect solution to answer your specific needs, guaranteeing a blazingly fact and smooth implementation, thus dramatically reducing time-to-market, time-to-value and consequently the TCO of your data engineering infrastructure. Smart Cities need digital twins to predict needs and avoid unforeseen problems, gathering data from thousands of sources and managing ever more complex telematics.
  • 24
    TruEra

    TruEra

    TruEra

    A machine learning monitoring solution that helps you easily oversee and troubleshoot high model volumes. With explainability accuracy that’s unparalleled and unique analyses that are not available anywhere else, data scientists avoid false alarms and dead ends, addressing critical problems quickly and effectively. Your machine learning models stay optimized, so that your business is optimized. TruEra’s solution is based on an explainability engine that, due to years of dedicated research and development, is significantly more accurate than current tools. TruEra’s enterprise-class AI explainability technology is without peer. The core diagnostic engine is based on six years of research at Carnegie Mellon University and dramatically outperforms competitors. The platform quickly performs sophisticated sensitivity analysis that enables data scientists, business users, and risk and compliance teams to understand exactly how and why a model makes predictions.
  • 25
    teX.ai

    teX.ai

    teX.ai

    Given the sea of content, your business generates, identifies, and processes only text that is of interest to you, quickly, accurately, and efficiently. Regardless of your business needs, operational agility, faster decisions, obtaining customer insights or more, teXai, a Forbes recognized text analytics company, helps you take advantage of text to propel your business forward. teXai's powerful customizable preprocessor engine identifies and extracts objects of your interest in the nooks and crannies of your organization’s emails, text messages, tables, website, social media, archives, or any documents of your choice. Its intelligent customizable linguistic application identifies text genre, groups, similar content and creates concise summaries so that your business teams can obtain the right context from the right text. The easy-to-use text analytics software extracts the essence of your text and simplifies the decision-making process.
  • 26
    NVIDIA DIGITS

    NVIDIA DIGITS

    NVIDIA DIGITS

    The NVIDIA Deep Learning GPU Training System (DIGITS) puts the power of deep learning into the hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural network (DNNs) for image classification, segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real-time with advanced visualizations, and selecting the best performing model from the results browser for deployment. DIGITS is completely interactive so that data scientists can focus on designing and training networks rather than programming and debugging. Interactively train models using TensorFlow and visualize model architecture using TensorBoard. Integrate custom plug-ins for importing special data formats such as DICOM used in medical imaging.
  • 27
    TFLearn

    TFLearn

    TFLearn

    TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed up experimentations while remaining fully transparent and compatible with it. Easy-to-use and understand high-level API for implementing deep neural networks, with tutorial and examples. Fast prototyping through highly modular built-in neural network layers, regularizers, optimizers, metrics. Full transparency over Tensorflow. All functions are built over tensors and can be used independently of TFLearn. Powerful helper functions to train any TensorFlow graph, with support of multiple inputs, outputs, and optimizers. Easy and beautiful graph visualization, with details about weights, gradients, activations and more. The high-level API currently supports most of the recent deep learning models, such as Convolutions, LSTM, BiRNN, BatchNorm, PReLU, Residual networks, Generative networks.
  • 28
    Fabric for Deep Learning (FfDL)
    Deep learning frameworks such as TensorFlow, PyTorch, Caffe, Torch, Theano, and MXNet have contributed to the popularity of deep learning by reducing the effort and skills needed to design, train, and use deep learning models. Fabric for Deep Learning (FfDL, pronounced “fiddle”) provides a consistent way to run these deep-learning frameworks as a service on Kubernetes. The FfDL platform uses a microservices architecture to reduce coupling between components, keep each component simple and as stateless as possible, isolate component failures, and allow each component to be developed, tested, deployed, scaled, and upgraded independently. Leveraging the power of Kubernetes, FfDL provides a scalable, resilient, and fault-tolerant deep-learning framework. The platform uses a distribution and orchestration layer that facilitates learning from a large amount of data in a reasonable amount of time across compute nodes.
  • 29
    Zebra by Mipsology
    Zebra by Mipsology is the ideal Deep Learning compute engine for neural network inference. Zebra seamlessly replaces or complements CPUs/GPUs, allowing any neural network to compute faster, with lower power consumption, at a lower cost. Zebra deploys swiftly, seamlessly, and painlessly without knowledge of underlying hardware technology, use of specific compilation tools, or changes to the neural network, the training, the framework, and the application. Zebra computes neural networks at world-class speed, setting a new standard for performance. Zebra runs on highest-throughput boards all the way to the smallest boards. The scaling provides the required throughput, in data centers, at the edge, or in the cloud. Zebra accelerates any neural network, including user-defined neural networks. Zebra processes the same CPU/GPU-based trained neural network with the same accuracy without any change.
  • 30
    Cloudera Data Platform
    Unlock the potential of private and public clouds with the only hybrid data platform for modern data architectures with data anywhere. Cloudera is a hybrid data platform designed for unmatched freedom to choose—any cloud, any analytics, any data. Cloudera delivers faster and easier data management and data analytics for data anywhere, with optimal performance, scalability, and security. With Cloudera you get all the advantages of private cloud and public cloud for faster time to value and increased IT control. Cloudera provides the freedom to securely move data, applications, and users bi-directionally between the data center and multiple data clouds, regardless of where your data lives.