Business Software for TensorFlow - Page 3

Top Software that integrates with TensorFlow as of November 2025 - Page 3

  • 1
    ML.NET

    ML.NET

    Microsoft

    ML.NET is a free, open source, and cross-platform machine learning framework designed for .NET developers to build custom machine learning models using C# or F# without leaving the .NET ecosystem. It supports various machine learning tasks, including classification, regression, clustering, anomaly detection, and recommendation systems. ML.NET integrates with other popular ML frameworks like TensorFlow and ONNX, enabling additional scenarios such as image classification and object detection. It offers tools like Model Builder and the ML.NET CLI, which utilize Automated Machine Learning (AutoML) to simplify the process of building, training, and deploying high-quality models. These tools automatically explore different algorithms and settings to find the best-performing model for a given scenario.
    Starting Price: Free
  • 2
    GitSummarize

    GitSummarize

    GitSummarize

    ​GitSummarize transforms any GitHub repository into a comprehensive AI-powered documentation hub, enhancing codebase understanding and collaboration. By simply replacing 'hub' with 'summarize' in a GitHub URL, users can generate detailed documentation for projects like React, Next.js, Transformers, VSCode, TensorFlow, and Go. It offers a rich web view-based chat interface for interactive engagement and implements a Git-based checkpoint system to track workspace changes during tasks. GitSummarize aims to streamline documentation processes and improve developer productivity. ​
    Starting Price: Free
  • 3
    Flower

    Flower

    Flower

    Flower is an open source federated learning framework designed to simplify the development and deployment of machine learning models across decentralized data sources. It enables training on data located on devices or servers without transferring the data itself, thereby enhancing privacy and reducing bandwidth usage. Flower supports a wide range of machine learning frameworks, including PyTorch, TensorFlow, Hugging Face Transformers, scikit-learn, and XGBoost, and is compatible with various platforms and cloud services like AWS, GCP, and Azure. It offers flexibility through customizable strategies and supports both horizontal and vertical federated learning scenarios. Flower's architecture allows for scalable experiments, with the capability to handle workloads involving tens of millions of clients. It also provides built-in support for privacy-preserving techniques like differential privacy and secure aggregation.
    Starting Price: Free
  • 4
    NVIDIA FLARE
    NVIDIA FLARE (Federated Learning Application Runtime Environment) is an open source, extensible SDK designed to facilitate federated learning across diverse industries, including healthcare, finance, and automotive. It enables secure, privacy-preserving AI model training by allowing multiple parties to collaboratively train models without sharing raw data. FLARE supports various machine learning frameworks such as PyTorch, TensorFlow, RAPIDS, and XGBoost, making it adaptable to existing workflows. FLARE's componentized architecture allows for customization and scalability, supporting both horizontal and vertical federated learning. It is suitable for applications requiring data privacy and regulatory compliance, such as medical imaging and financial analytics. It is available for download via the NVIDIA NVFlare GitHub repository and PyPi.
    Starting Price: Free
  • 5
    LiteRT

    LiteRT

    Google

    LiteRT (Lite Runtime), formerly known as TensorFlow Lite, is Google's high-performance runtime for on-device AI. It enables developers to deploy machine learning models across various platforms and microcontrollers. LiteRT supports models from TensorFlow, PyTorch, and JAX, converting them into the efficient FlatBuffers format (.tflite) for optimized on-device inference. Key features include low latency, enhanced privacy by processing data locally, reduced model and binary sizes, and efficient power consumption. The runtime offers SDKs in multiple languages such as Java/Kotlin, Swift, Objective-C, C++, and Python, facilitating integration into diverse applications. Hardware acceleration is achieved through delegates like GPU and iOS Core ML, improving performance on supported devices. LiteRT Next, currently in alpha, introduces a new set of APIs that streamline on-device hardware acceleration.
    Starting Price: Free
  • 6
    skillsync

    skillsync

    skillsync

    Skillsync analyzes code contributions to reveal how engineers think and work, create a map of domain expertise and working styles within your team, and scale what works by identifying successful patterns and replicating them across your organization. It analyzes your codebase to find domain experts, discover unique skills, and capture successful patterns. No surveys needed, just timely insights that help you scale what works across your team. It reads your real work, pull requests, reviews, comments, and builds a living skill graph that highlights not just what contributors do, but also how they think, collaborate, and contribute. With Skillsync, you can discover hidden talent in your codebase; find the right experts for the right problems; scale unique skills with repeatable playbooks; and even build your own agents on top of real team intelligence.
    Starting Price: Free
  • 7
    RazorThink

    RazorThink

    RazorThink

    RZT aiOS offers all of the benefits of a unified artificial intelligence platform and more, because it's not just a platform — it's a comprehensive Operating System that fully connects, manages and unifies all of your AI initiatives. And, AI developers now can do in days what used to take them months, because aiOS process management dramatically increases the productivity of AI teams. This Operating System offers an intuitive environment for AI development, letting you visually build models, explore data, create processing pipelines, run experiments, and view analytics. What's more is that you can do it all even without advanced software engineering skills.
  • 8
    Interplay

    Interplay

    Iterate.ai

    Interplay Platform is a patented low-code platform with 475 pre-built connectors (enterprise, AI, IoT, Startup Technologies). It's used as middleware and as a rapid app building platform by big companies like Circle K, Ulta Beauty, and many others. As middleware, it operates Pay-by-Plate (frictionless payments at the gas pump) in Europe, Weapons Detection (to predict robberies), AI-based Chat, online personalization tools, low price guarantee tools, computer vision applications such as damage estimation, and much more. It also helps companies to go to market with their digital solutions 10X to 17X faster than in old ways.
  • 9
    IBM Watson Studio
    Build, run and manage AI models, and optimize decisions at scale across any cloud. IBM Watson Studio empowers you to operationalize AI anywhere as part of IBM Cloud Pak® for Data, the IBM data and AI platform. Unite teams, simplify AI lifecycle management and accelerate time to value with an open, flexible multicloud architecture. Automate AI lifecycles with ModelOps pipelines. Speed data science development with AutoAI. Prepare and build models visually and programmatically. Deploy and run models through one-click integration. Promote AI governance with fair, explainable AI. Drive better business outcomes by optimizing decisions. Use open source frameworks like PyTorch, TensorFlow and scikit-learn. Bring together the development tools including popular IDEs, Jupyter notebooks, JupterLab and CLIs — or languages such as Python, R and Scala. IBM Watson Studio helps you build and scale AI with trust and transparency by automating AI lifecycle management.
  • 10
    Intel Tiber AI Studio
    Intel® Tiber™ AI Studio is a comprehensive machine learning operating system that unifies and simplifies the AI development process. The platform supports a wide range of AI workloads, providing a hybrid and multi-cloud infrastructure that accelerates ML pipeline development, model training, and deployment. With its native Kubernetes orchestration and meta-scheduler, Tiber™ AI Studio offers complete flexibility in managing on-prem and cloud resources. Its scalable MLOps solution enables data scientists to easily experiment, collaborate, and automate their ML workflows while ensuring efficient and cost-effective utilization of resources.
  • 11
    GigaSpaces

    GigaSpaces

    GigaSpaces

    Smart DIH is an operational data hub that powers real-time modern applications. It unleashes the power of customers’ data by transforming data silos into assets, turning organizations into data-driven enterprises. Smart DIH consolidates data from multiple heterogeneous systems into a highly performant data layer. Low code tools empower data professionals to deliver data microservices in hours, shortening developing cycles and ensuring data consistency across all digital channels. XAP Skyline is a cloud-native, in memory data grid (IMDG) and developer framework designed for mission critical, cloud-native apps. XAP Skyline delivers maximal throughput, microsecond latency and scale, while maintaining transactional consistency. It provides extreme performance, significantly reducing data access time, which is crucial for real-time decisioning, and transactional applications. XAP Skyline is used in financial services, retail, and other industries where speed and scalability are critical.
  • 12
    Datatron

    Datatron

    Datatron

    Datatron offers tools and features built from scratch, specifically to make machine learning in production work for you. Most teams discover that there’s more to just deploying models, which is already a very manual and time-consuming task. Datatron offers single model governance and management platform for all of your ML, AI, and Data Science models in production. We help you automate, optimize, and accelerate your ML models to ensure that they are running smoothly and efficiently in production. Data Scientists use a variety of frameworks to build the best models. We support anything you’d build a model with ( e.g. TensorFlow, H2O, Scikit-Learn, and SAS ). Explore models built and uploaded by your data science team, all from one centralized repository. Create a scalable model deployment in just a few clicks. Deploy models built using any language or framework. Make better decisions based on your model performance.
  • 13
    Unleash live
    Unleash live is an A.I. video analytics enterprise solution provider. We take a vision from any camera and combine it with computer vision to deliver actionable data in real-time so that your organization has immediate insights to drive down costs, improve productivity, increase accuracy, and improve safety. Support for a wide range of cameras. Connect any combination of IP/CCTV, drone, body cam, mobile or robotic cameras. Live stream in the field and share it with your team while operations are in progress, or upload footage into your account. Apply A. I Apps from our app store to detect, inspect and monitor objects and items of interest or create 2D orthomaps and 3D models. Integrate results into your operational workflow, from live dashboards, to notifications and API integrations. Take the complexity and time out of collaboration. Instantly connect any mix of cameras to share over a live stream with stakeholders and 3rd parties. No plugs-in, no downloads, all in the browser.
    Starting Price: $99 per month
  • 14
    Xtendlabs

    Xtendlabs

    Xtendlabs

    Installing, and configuring today’s complex software technology platforms takes an extraordinary investment in time and resources. Not with Xtendlabs. Xtendlabs Emerging Technology Platform-as-a-Services provides immediate access to emerging Big Data, Data Sciences, and Database technology platforms online, from any device and location, 24/7. Xtendlabs are available on-demand, any time, from any location, including home, office or the road. Xtendlabs scale to meet your needs on-demand, so you can focus on your business problem and learning rather than struggling to find and set up infrastructure . Just sign-in to get immediate access to your virtual lab environment. Xtendlabs requires no virtual machine installation, system setup or configuration, saving valuable time and resources. Pay as you go monthly. With Xtendlabs there are no upfront investments in software or hardware.
  • 15
    Collimator

    Collimator

    Collimator

    Collimator is a modeling and simulation platform for hybrid dynamical systems. We allow engineers to design and test complex, mission critical systems in a way that is reliable, secure, fast and intuitive. Our customers are electrical, mechanical and control systems engineers who are using Collimator to increase productivity, improve performance and collaborate more effectively. They do this using our out of the box features including an intuitive block diagram graphical editor, Python blocks to develop custom algorithms, Jupyter notebooks to parametrize and optimize their systems, high performance computing in the cloud and role based access controls.
  • 16
    Mona

    Mona

    Mona

    Gain complete visibility into the performance of your data, models, and processes with the most flexible monitoring solution. Automatically surface and resolve performance issues within your AI/ML or intelligent automation processes to avoid negative impacts on both your business and customers. Learning how your data, models, and processes perform in the real world is critical to continuously improving your processes. Monitoring is the ‘eyes and ears' needed to observe your data and workflows to tell you if they’re performing well. Mona exhaustively analyzes your data to provide actionable insights based on advanced anomaly detection mechanisms, to alert you before your business KPIs are hurt. Take stock of any part of your production workflows and business processes, including models, pipelines, and business outcomes. Whatever datatype you work with, whether you have a batch or streaming real-time processes, and for the specific way in which you want to measure your performance.
  • 17
    Google Cloud Deep Learning VM Image
    Provision a VM quickly with everything you need to get your deep learning project started on Google Cloud. Deep Learning VM Image makes it easy and fast to instantiate a VM image containing the most popular AI frameworks on a Google Compute Engine instance without worrying about software compatibility. You can launch Compute Engine instances pre-installed with TensorFlow, PyTorch, scikit-learn, and more. You can also easily add Cloud GPU and Cloud TPU support. Deep Learning VM Image supports the most popular and latest machine learning frameworks, like TensorFlow and PyTorch. To accelerate your model training and deployment, Deep Learning VM Images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers and the Intel® Math Kernel Library. Get started immediately with all the required frameworks, libraries, and drivers pre-installed and tested for compatibility. Deep Learning VM Image delivers a seamless notebook experience with integrated support for JupyterLab.
  • 18
    Tecton

    Tecton

    Tecton

    Deploy machine learning applications to production in minutes, rather than months. Automate the transformation of raw data, generate training data sets, and serve features for online inference at scale. Save months of work by replacing bespoke data pipelines with robust pipelines that are created, orchestrated and maintained automatically. Increase your team’s efficiency by sharing features across the organization and standardize all of your machine learning data workflows in one platform. Serve features in production at extreme scale with the confidence that systems will always be up and running. Tecton meets strict security and compliance standards. Tecton is not a database or a processing engine. It plugs into and orchestrates on top of your existing storage and processing infrastructure.
  • 19
    MLReef

    MLReef

    MLReef

    MLReef enables domain experts and data scientists to securely collaborate via a hybrid of pro-code & no-code development approaches. 75% increase in productivity due to distributed workloads. This enables teams to complete more ML projects faster. Domain experts and data scientists collaborate on the same platform reducing 100% of unnecessary communication ping-pong. MLReef works on your premises and uniquely enables 100% reproducibility and continuity. Rebuild all work at any time. You can use already well-known and established git repositories to create explorable, interoperable, and versioned AI modules. AI Modules created by your data scientists become drag-and-drop elements. These are adjustable by parameters, versioned, interoperable, and explorable within your entire organization. Data handling often requires expert knowledge that a single data scientist often lacks. MLReef enables your field experts to relieve your data processing task, reducing complexities.
  • 20
    IBM Distributed AI APIs
    Distributed AI is a computing paradigm that bypasses the need to move vast amounts of data and provides the ability to analyze data at the source. Distributed AI APIs built by IBM Research is a set of RESTful web services with data and AI algorithms to support AI applications across hybrid cloud, distributed, and edge computing environments. Each Distributed AI API addresses the challenges in enabling AI in distributed and edge environments with APIs. The Distributed AI APIs do not focus on the basic requirements of creating and deploying AI pipelines, for example, model training and model serving. You would use your favorite open-source packages such as TensorFlow or PyTorch. Then, you can containerize your application, including the AI pipeline, and deploy these containers at the distributed locations. In many cases, it’s useful to use a container orchestrator such as Kubernetes or OpenShift operators to automate the deployment process.
  • 21
    Cameralyze

    Cameralyze

    Cameralyze

    Empower your product with AI. Our platform offers a vast selection of pre-built models and a user-friendly no-code interface for custom models. Integrate AI seamlessly into your application and gain a competitive edge. Sentiment analysis, also known as opinion mining, is the process of extracting subjective information from text data, such as reviews, social media posts, or customer feedback, and categorizing it as positive, negative, or neutral. This technology has gained increasing importance in recent years, as more and more companies are using it to understand their customers' opinions and needs, and to make data-driven decisions that can improve their products, services, and marketing strategies. Sentiment analysis is a powerful technology that helps companies understand customer feedback and make data-driven decisions to improve their products, services, and marketing strategies.
    Starting Price: $29 per month
  • 22
    Label Studio

    Label Studio

    Label Studio

    The most flexible data annotation tool. Quickly installable. Build custom UIs or use pre-built labeling templates. Configurable layouts and templates adapt to your dataset and workflow. Detect objects on images, boxes, polygons, circular, and key points supported. Partition the image into multiple segments. Use ML models to pre-label and optimize the process. Webhooks, Python SDK, and API allow you to authenticate, create projects, import tasks, manage model predictions, and more. Save time by using predictions to assist your labeling process with ML backend integration. Connect to cloud object storage and label data there directly with S3 and GCP. Prepare and manage your dataset in our Data Manager using advanced filters. Support multiple projects, use cases, and data types in one platform. Start typing in the config, and you can quickly preview the labeling interface. At the bottom of the page, you have live serialization updates of what Label Studio expects as an input.
  • 23
    Horovod

    Horovod

    Horovod

    Horovod was originally developed by Uber to make distributed deep learning fast and easy to use, bringing model training time down from days and weeks to hours and minutes. With Horovod, an existing training script can be scaled up to run on hundreds of GPUs in just a few lines of Python code. Horovod can be installed on-premise or run out-of-the-box in cloud platforms, including AWS, Azure, and Databricks. Horovod can additionally run on top of Apache Spark, making it possible to unify data processing and model training into a single pipeline. Once Horovod has been configured, the same infrastructure can be used to train models with any framework, making it easy to switch between TensorFlow, PyTorch, MXNet, and future frameworks as machine learning tech stacks continue to evolve.
    Starting Price: Free
  • 24
    Tausight

    Tausight

    Tausight

    Tausight’s healthcare data security platform is trained using a patented algorithm to find ePHI on devices, data stores and cloud assets. The result is powerful insights on the how PHI is being accessed, where it’s traveling, and how it might be at risk. Tausight is designed to fit into the unique, decentralized environments of healthcare. API integrations with leading security operations, ticketing and response systems enable automated protection of vulnerable ePHI. Tausight’s agentless cloud deployment and lightweight sensor can be installed in minutes, helping you discover ePHI in 60 minutes or less.
  • 25
    GPUEater

    GPUEater

    GPUEater

    Persistence container technology enables lightweight operation. Pay-per-use in seconds rather than hours or months. Fees will be paid by credit card in the next month. High performance, but low price compared to others. Will be installed in the world's fastest supercomputer by Oak Ridge National Laboratory. Machine learning applications like deep learning, computational fluid dynamics, video encoding, 3D graphics workstation, 3D rendering, VFX, computational finance, seismic analysis, molecular modeling, genomics, and other server-side GPU computation workloads.
    Starting Price: $0.0992 per hour
  • 26
    GPUonCLOUD

    GPUonCLOUD

    GPUonCLOUD

    Traditionally, deep learning, 3D modeling, simulations, distributed analytics, and molecular modeling take days or weeks time. However, with GPUonCLOUD’s dedicated GPU servers, it's a matter of hours. You may want to opt for pre-configured systems or pre-built instances with GPUs featuring deep learning frameworks like TensorFlow, PyTorch, MXNet, TensorRT, libraries e.g. real-time computer vision library OpenCV, thereby accelerating your AI/ML model-building experience. Among the wide variety of GPUs available to us, some of the GPU servers are best fit for graphics workstations and multi-player accelerated gaming. Instant jumpstart frameworks increase the speed and agility of the AI/ML environment with effective and efficient environment lifecycle management.
    Starting Price: $1 per hour
  • 27
    RagaAI

    RagaAI

    RagaAI

    RagaAI is the #1 AI testing platform that helps enterprises mitigate AI risks and make their models secure and reliable. Reduce AI risk exposure across cloud or edge deployments and optimize MLOps costs with intelligent recommendations. A foundation model specifically designed to revolutionize AI testing. Easily identify the next steps to fix dataset and model issues. The AI-testing methods used by most today increase the time commitment and reduce productivity while building models. Also, they leave unforeseen risks, so they perform poorly post-deployment and thus waste both time and money for the business. We have built an end-to-end AI testing platform that helps enterprises drastically improve their AI development pipeline and prevent inefficiencies and risks post-deployment. 300+ tests to identify and fix every model, data, and operational issue, and accelerate AI development with comprehensive testing.
  • 28
    NodeShift

    NodeShift

    NodeShift

    We help you slash cloud costs so you can focus on building amazing solutions. Spin the globe and point at the map, NodeShift is available there too. Regardless of where you deploy, benefit from increased privacy. Your data is up and running even if an entire country’s electricity grid goes down. The ideal way for organizations young and old to ease their way into the distributed and affordable cloud at their own pace. The most affordable compute and GPU virtual machines at scale. The NodeShift platform aggregates multiple independent data centers across the world and a wide range of existing decentralized solutions under one hood such as Akash, Filecoin, ThreeFold, and many more, with an emphasis on affordable prices and a friendly UX. Payment for its cloud services is simple and straightforward, giving every business access to the same interfaces as the traditional cloud but with several key added benefits of decentralization such as affordability, privacy, and resilience.
    Starting Price: $19.98 per month
  • 29
    Apolo

    Apolo

    Apolo

    Access readily available dedicated machines with pre-configured professional AI development tools, from dependable data centers at competitive prices. From HPC resources to an all-in-one AI platform with an integrated ML development toolkit, Apolo covers it all. Apolo can be deployed in a distributed architecture, as a dedicated enterprise cluster, or as a multi-tenant white-label solution to support dedicated instances or self-service cloud. Right out of the box, Apolo spins up a full-fledged AI-centric development environment with all the tools you need at your fingertips. Apolo manages and automates the infrastructure and processes for successful AI development at scale. Apolo's AI-centric services seamlessly stitch your on-prem and cloud resources, deploy pipelines, and integrate your open-source and commercial development tools. Apolo empowers enterprises with the tools and resources necessary to achieve breakthroughs in AI.
    Starting Price: $5.35 per hour
  • 30
    Comet LLM

    Comet LLM

    Comet LLM

    CometLLM is a tool to log and visualize your LLM prompts and chains. Use CometLLM to identify effective prompt strategies, streamline your troubleshooting, and ensure reproducible workflows. Log your prompts and responses, including prompt template, variables, timestamps and duration, and any metadata that you need. Visualize your prompts and responses in the UI. Log your chain execution down to the level of granularity that you need. Visualize your chain execution in the UI. Automatically tracks your prompts when using the OpenAI chat models. Track and analyze user feedback. Diff your prompts and chain execution in the UI. Comet LLM Projects have been designed to support you in performing smart analysis of your logged prompt engineering workflows. Each column header corresponds to a metadata attribute logged in the LLM project, so the exact list of the displayed default headers can vary across projects.
    Starting Price: Free