Business Software for PyTorch - Page 4

Top Software that integrates with PyTorch as of July 2025 - Page 4

PyTorch Clear Filters
  • 1
    Amazon SageMaker Model Building
    Amazon SageMaker provides all the tools and libraries you need to build ML models, the process of iteratively trying different algorithms and evaluating their accuracy to find the best one for your use case. In Amazon SageMaker you can pick different algorithms, including over 15 that are built-in and optimized for SageMaker, and use over 150 pre-built models from popular model zoos available with a few clicks. SageMaker also offers a variety of model-building tools including Amazon SageMaker Studio Notebooks and RStudio where you can run ML models on a small scale to see results and view reports on their performance so you can come up with high-quality working prototypes. Amazon SageMaker Studio Notebooks help you build ML models faster and collaborate with your team. Amazon SageMaker Studio notebooks provide one-click Jupyter notebooks that you can start working within seconds. Amazon SageMaker also enables one-click sharing of notebooks.
  • 2
    Amazon SageMaker Studio
    Amazon SageMaker Studio is an integrated development environment (IDE) that provides a single web-based visual interface where you can access purpose-built tools to perform all machine learning (ML) development steps, from preparing data to building, training, and deploying your ML models, improving data science team productivity by up to 10x. You can quickly upload data, create new notebooks, train and tune models, move back and forth between steps to adjust experiments, collaborate seamlessly within your organization, and deploy models to production without leaving SageMaker Studio. Perform all ML development steps, from preparing raw data to deploying and monitoring ML models, with access to the most comprehensive set of tools in a single web-based visual interface. Amazon SageMaker Unified Studio is a comprehensive, AI and data development environment designed to streamline workflows and simplify the process of building and deploying machine learning models.
  • 3
    Amazon SageMaker Studio Lab
    Amazon SageMaker Studio Lab is a free machine learning (ML) development environment that provides the compute, storage (up to 15GB), and security, all at no cost, for anyone to learn and experiment with ML. All you need to get started is a valid email address, you don’t need to configure infrastructure or manage identity and access or even sign up for an AWS account. SageMaker Studio Lab accelerates model building through GitHub integration, and it comes preconfigured with the most popular ML tools, frameworks, and libraries to get you started immediately. SageMaker Studio Lab automatically saves your work so you don’t need to restart in between sessions. It’s as easy as closing your laptop and coming back later. Free machine learning development environment that provides the computing, storage, and security to learn and experiment with ML. GitHub integration and preconfigured with the most popular ML tools, frameworks, and libraries so you can get started immediately.
  • 4
    Amazon Elastic Inference
    Amazon Elastic Inference allows you to attach low-cost GPU-powered acceleration to Amazon EC2 and Sagemaker instances or Amazon ECS tasks, to reduce the cost of running deep learning inference by up to 75%. Amazon Elastic Inference supports TensorFlow, Apache MXNet, PyTorch and ONNX models. Inference is the process of making predictions using a trained model. In deep learning applications, inference accounts for up to 90% of total operational costs for two reasons. Firstly, standalone GPU instances are typically designed for model training - not for inference. While training jobs batch process hundreds of data samples in parallel, inference jobs usually process a single input in real time, and thus consume a small amount of GPU compute. This makes standalone GPU inference cost-inefficient. On the other hand, standalone CPU instances are not specialized for matrix operations, and thus are often too slow for deep learning inference.
  • 5
    Robust Intelligence

    Robust Intelligence

    Robust Intelligence

    The Robust Intelligence Platform integrates seamlessly into your ML lifecycle to eliminate model failures. The platform detects your model’s vulnerabilities, prevents aberrant data from entering your AI system, and detects statistical data issues like drift. At the core of our test-based approach is a single test. Each test measures your model’s robustness to a specific type of production model failure. Stress Testing runs hundreds of these tests to measure model production readiness. The results of these tests are used to auto-configure a custom AI Firewall that protects the model against the specific forms of failure to which a given model is susceptible. Finally, Continuous Testing runs these tests during production, providing automated root cause analysis informed by the underlying cause of any single test failure. Using all three elements of the Robust Intelligence platform together helps ensure ML Integrity.
  • 6
    EdgeCortix

    EdgeCortix

    EdgeCortix

    Breaking the limits in AI processors and edge AI inference acceleration. Where AI inference acceleration needs it all, more TOPS, lower latency, better area and power efficiency, and scalability, EdgeCortix AI processor cores make it happen. General-purpose processing cores, CPUs, and GPUs, provide developers with flexibility for most applications. However, these general-purpose cores don’t match up well with workloads found in deep neural networks. EdgeCortix began with a mission in mind: redefining edge AI processing from the ground up. With EdgeCortix technology including a full-stack AI inference software development environment, run-time reconfigurable edge AI inference IP, and edge AI chips for boards and systems, designers can deploy near-cloud-level AI performance at the edge. Think about what that can do for these and other applications. Finding threats, raising situational awareness, and making vehicles smarter.
  • 7
    Modelbit

    Modelbit

    Modelbit

    Don't change your day-to-day, works with Jupyter Notebooks and any other Python environment. Simply call modelbi.deploy to deploy your model, and let Modelbit carry it — and all its dependencies — to production. ML models deployed with Modelbit can be called directly from your warehouse as easily as calling a SQL function. They can also be called as a REST endpoint directly from your product. Modelbit is backed by your git repo. GitHub, GitLab, or home grown. Code review. CI/CD pipelines. PRs and merge requests. Bring your whole git workflow to your Python ML models. Modelbit integrates seamlessly with Hex, DeepNote, Noteable and more. Take your model straight from your favorite cloud notebook into production. Sick of VPC configurations and IAM roles? Seamlessly redeploy your SageMaker models to Modelbit. Immediately reap the benefits of Modelbit's platform with the models you've already built.
  • 8
    SynapseAI

    SynapseAI

    Habana Labs

    Like our accelerator hardware, was purpose-designed to optimize deep learning performance, efficiency, and most importantly for developers, ease of use. With support for popular frameworks and models, the goal of SynapseAI is to facilitate ease and speed for developers, using the code and tools they use regularly and prefer. In essence, SynapseAI and its many tools and support are designed to meet deep learning developers where you are — enabling you to develop what and how you want. Habana-based deep learning processors, preserve software investments, and make it easy to build new models— for both training and deployment of the numerous and growing models defining deep learning, generative AI and large language models.
  • 9
    Vast.ai

    Vast.ai

    Vast.ai

    Vast.ai is the market leader in low-cost cloud GPU rental. Use one simple interface to save 5-6X on GPU compute. Use on-demand rentals for convenience and consistent pricing. Or save a further 50% or more with interruptible instances using spot auction based pricing. Vast has an array of providers that offer different levels of security: from hobbyists up to Tier-4 data centers. Vast.ai helps you find the best pricing for the level of security and reliability you need. Use our command line interface to search the entire marketplace for offers while utilizing scriptable filters and sort options. Launch instances quickly right from the CLI and easily automate your deployment. Save an additional 50% or more by using interruptible instances and auction pricing. The highest bidding instances run; other conflicting instances are stopped.
    Starting Price: $0.20 per hour
  • 10
    Cirrascale

    Cirrascale

    Cirrascale

    Our high-throughput storage systems can serve millions of small, random files to GPU-based training servers accelerating overall training times. We offer high-bandwidth, low-latency networks for connecting distributed training servers as well as transporting data between storage and servers. Other cloud providers squeeze you with extra fees and charges to get your data out of their storage clouds, and those can add up fast. We consider ourselves an extension of your team. We work with you to set up scheduling services, help with best practices, and provide superior support. Workflows can vary from company to company. Cirrascale works to ensure you get the right solution for your needs to get you the best results. Cirrascale is the only provider that works with you to tailor your cloud instances to increase performance, remove bottlenecks, and optimize your workflow. Cloud-based solutions to accelerate your training, simulation, and re-simulation time.
    Starting Price: $2.49 per hour
  • 11
    Yamak.ai

    Yamak.ai

    Yamak.ai

    Train and deploy GPT models for any use case with the first no-code AI platform for businesses. Our prompt experts are here to help you. If you're looking to fine-tune open source models with your own data, our cost-effective tools are specifically designed for the same. Securely deploy your own open source model across multiple clouds without the need to rely on third-party vendors for your valuable data. Our team of experts will deliver the perfect app tailored to your specific requirements. Our tool enables you to effortlessly monitor your usage and reduce costs. Partner with us and let our expert team address your pain points effectively. Efficiently classify your customer calls and automate your company’s customer service with ease. Our advanced solution empowers you to streamline customer interactions and enhance service delivery. Build a robust system that detects fraud and anomalies in your data based on previously flagged data points.
  • 12
    SuperDuperDB

    SuperDuperDB

    SuperDuperDB

    Build and manage AI applications easily without needing to move your data to complex pipelines and specialized vector databases. Integrate AI and vector search directly with your database including real-time inference and model training. A single scalable deployment of all your AI models and APIs which is automatically kept up-to-date as new data is processed immediately. No need to introduce an additional database and duplicate your data to use vector search and build on top of it. SuperDuperDB enables vector search in your existing database. Integrate and combine models from Sklearn, PyTorch, and HuggingFace with AI APIs such as OpenAI to build even the most complex AI applications and workflows. Deploy all your AI models to automatically compute outputs (inference) in your datastore in a single environment with simple Python commands.
  • 13
    Groq

    Groq

    Groq

    Groq is on a mission to set the standard for GenAI inference speed, helping real-time AI applications come to life today. An LPU inference engine, with LPU standing for Language Processing Unit, is a new type of end-to-end processing unit system that provides the fastest inference for computationally intensive applications with a sequential component, such as AI language applications (LLMs). The LPU is designed to overcome the two LLM bottlenecks, compute density and memory bandwidth. An LPU has greater computing capacity than a GPU and CPU in regards to LLMs. This reduces the amount of time per word calculated, allowing sequences of text to be generated much faster. Additionally, eliminating external memory bottlenecks enables the LPU inference engine to deliver orders of magnitude better performance on LLMs compared to GPUs. Groq supports standard machine learning frameworks such as PyTorch, TensorFlow, and ONNX for inference.
  • 14
    Gemma

    Gemma

    Google

    Gemma is a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. Developed by Google DeepMind and other teams across Google, Gemma is inspired by Gemini, and the name reflects the Latin gemma, meaning “precious stone.” Accompanying our model weights, we’re also releasing tools to support developer innovation, foster collaboration, and guide the responsible use of Gemma models. Gemma models share technical and infrastructure components with Gemini, our largest and most capable AI model widely available today. This enables Gemma 2B and 7B to achieve best-in-class performance for their sizes compared to other open models. And Gemma models are capable of running directly on a developer laptop or desktop computer. Notably, Gemma surpasses significantly larger models on key benchmarks while adhering to our rigorous standards for safe and responsible outputs.
  • 15
    3LC

    3LC

    3LC

    Light up the black box and pip install 3LC to gain the clarity you need to make meaningful changes to your models in moments. Remove the guesswork from your model training and iterate fast. Collect per-sample metrics and visualize them in your browser. Analyze your training and eliminate issues in your dataset. Model-guided, interactive data debugging and enhancements. Find important or inefficient samples. Understand what samples work and where your model struggles. Improve your model in different ways by weighting your data. Make sparse, non-destructive edits to individual samples or in a batch. Maintain a lineage of all changes and restore any previous revisions. Dive deeper than standard experiment trackers with per-sample per epoch metrics and data tracking. Aggregate metrics by sample features, rather than just epoch, to spot hidden trends. Tie each training run to a specific dataset revision for full reproducibility.
  • 16
    Gemma 2

    Gemma 2

    Google

    A family of state-of-the-art, light-open models created from the same research and technology that were used to create Gemini models. These models incorporate comprehensive security measures and help ensure responsible and reliable AI solutions through selected data sets and rigorous adjustments. Gemma models achieve exceptional comparative results in their 2B, 7B, 9B, and 27B sizes, even outperforming some larger open models. With Keras 3.0, enjoy seamless compatibility with JAX, TensorFlow, and PyTorch, allowing you to effortlessly choose and change frameworks based on task. Redesigned to deliver outstanding performance and unmatched efficiency, Gemma 2 is optimized for incredibly fast inference on various hardware. The Gemma family of models offers different models that are optimized for specific use cases and adapt to your needs. Gemma models are large text-to-text lightweight language models with a decoder, trained in a huge set of text data, code, and mathematical content.
  • 17
    ModelOp

    ModelOp

    ModelOp

    ModelOp is the leading AI governance software that helps enterprises safeguard all AI initiatives, including generative AI, Large Language Models (LLMs), in-house, third-party vendors, embedded systems, etc., without stifling innovation. Corporate boards and C‑suites are demanding the rapid adoption of generative AI but face financial, regulatory, security, privacy, ethical, and brand risks. Global, federal, state, and local-level governments are moving quickly to implement AI regulations and oversight, forcing enterprises to urgently prepare for and comply with rules designed to prevent AI from going wrong. Connect with AI Governance experts to stay informed about market trends, regulations, news, research, opinions, and insights to help you balance the risks and rewards of enterprise AI. ModelOp Center keeps organizations safe and gives peace of mind to all stakeholders. Streamline reporting, monitoring, and compliance adherence across the enterprise.
  • 18
    Runyour AI

    Runyour AI

    Runyour AI

    From renting machines for AI research to specialized templates and servers, Runyour AI provides the optimal environment for artificial intelligence research. Runyour AI is an AI cloud service that provides easy access to GPU resources and research environments for artificial intelligence research. You can rent various high-performance GPU machines and environments at a reasonable price. Additionally, you can register your own GPUs to generate revenue. Transparent billing policy where you pay for charging points used through minute-by-minute real-time monitoring. From casual hobbyists to seasoned researchers, we provide specialized GPUs for AI projects, catering to a range of needs. An AI project environment that is easy and convenient for even first-time users. By utilizing Runyour AI's GPU machines, you can kickstart your AI research with minimal setup. Designed for quick access to GPUs, it provides a seamless research environment for machine learning and AI development.
  • 19
    Fuzzball
    Fuzzball accelerates innovation for researchers and scientists by eliminating the burdens of infrastructure provisioning and management. Fuzzball streamlines and optimizes high-performance computing (HPC) workload design and execution. A user-friendly GUI for designing, editing, and executing HPC jobs. Comprehensive control and automation of all HPC tasks via CLI. Automated data ingress and egress with full compliance logs. Native integration with GPUs and both on-prem and cloud storage on-prem and cloud storage. Human-readable, portable workflow files that execute anywhere. CIQ’s Fuzzball modernizes traditional HPC with an API-first, container-optimized architecture. Operating on Kubernetes, it provides all the security, performance, stability, and convenience found in modern software and infrastructure. Fuzzball not only abstracts the infrastructure layer but also automates the orchestration of complex workflows, driving greater efficiency and collaboration.
  • 20
    Simplismart

    Simplismart

    Simplismart

    Fine-tune and deploy AI models with Simplismart's fastest inference engine. Integrate with AWS/Azure/GCP and many more cloud providers for simple, scalable, cost-effective deployment. Import open source models from popular online repositories or deploy your own custom model. Leverage your own cloud resources or let Simplismart host your model. With Simplismart, you can go far beyond AI model deployment. You can train, deploy, and observe any ML model and realize increased inference speeds at lower costs. Import any dataset and fine-tune open-source or custom models rapidly. Run multiple training experiments in parallel efficiently to speed up your workflow. Deploy any model on our endpoints or your own VPC/premise and see greater performance at lower costs. Streamlined and intuitive deployment is now a reality. Monitor GPU utilization and all your node clusters in one dashboard. Detect any resource constraints and model inefficiencies on the go.
  • 21
    Amazon EC2 P5 Instances
    Amazon Elastic Compute Cloud (Amazon EC2) P5 instances, powered by NVIDIA H100 Tensor Core GPUs, and P5e and P5en instances powered by NVIDIA H200 Tensor Core GPUs deliver the highest performance in Amazon EC2 for deep learning and high-performance computing applications. They help you accelerate your time to solution by up to 4x compared to previous-generation GPU-based EC2 instances, and reduce the cost to train ML models by up to 40%. These instances help you iterate on your solutions at a faster pace and get to market more quickly. You can use P5, P5e, and P5en instances for training and deploying increasingly complex large language models and diffusion models powering the most demanding generative artificial intelligence applications. These applications include question-answering, code generation, video and image generation, and speech recognition. You can also use these instances to deploy demanding HPC applications at scale for pharmaceutical discovery.
  • 22
    Amazon EC2 Capacity Blocks for ML
    Amazon EC2 Capacity Blocks for ML enable you to reserve accelerated compute instances in Amazon EC2 UltraClusters for your machine learning workloads. This service supports Amazon EC2 P5en, P5e, P5, and P4d instances, powered by NVIDIA H200, H100, and A100 Tensor Core GPUs, respectively, as well as Trn2 and Trn1 instances powered by AWS Trainium. You can reserve these instances for up to six months in cluster sizes ranging from one to 64 instances (512 GPUs or 1,024 Trainium chips), providing flexibility for various ML workloads. Reservations can be made up to eight weeks in advance. By colocating in Amazon EC2 UltraClusters, Capacity Blocks offer low-latency, high-throughput network connectivity, facilitating efficient distributed training. This setup ensures predictable access to high-performance computing resources, allowing you to plan ML development confidently, run experiments, build prototypes, and accommodate future surges in demand for ML applications.
  • 23
    Amazon EC2 UltraClusters
    Amazon EC2 UltraClusters enable you to scale to thousands of GPUs or purpose-built machine learning accelerators, such as AWS Trainium, providing on-demand access to supercomputing-class performance. They democratize supercomputing for ML, generative AI, and high-performance computing developers through a simple pay-as-you-go model without setup or maintenance costs. UltraClusters consist of thousands of accelerated EC2 instances co-located in a given AWS Availability Zone, interconnected using Elastic Fabric Adapter (EFA) networking in a petabit-scale nonblocking network. This architecture offers high-performance networking and access to Amazon FSx for Lustre, a fully managed shared storage built on a high-performance parallel file system, enabling rapid processing of massive datasets with sub-millisecond latencies. EC2 UltraClusters provide scale-out capabilities for distributed ML training and tightly coupled HPC workloads, reducing training times.
  • 24
    Amazon EC2 Trn2 Instances
    Amazon EC2 Trn2 instances, powered by AWS Trainium2 chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and diffusion models. They offer up to 50% cost-to-train savings over comparable Amazon EC2 instances. Trn2 instances support up to 16 Trainium2 accelerators, providing up to 3 petaflops of FP16/BF16 compute power and 512 GB of high-bandwidth memory. To facilitate efficient data and model parallelism, Trn2 instances feature NeuronLink, a high-speed, nonblocking interconnect, and support up to 1600 Gbps of second-generation Elastic Fabric Adapter (EFAv2) network bandwidth. They are deployed in EC2 UltraClusters, enabling scaling up to 30,000 Trainium2 chips interconnected with a nonblocking petabit-scale network, delivering 6 exaflops of compute performance. The AWS Neuron SDK integrates natively with popular machine learning frameworks like PyTorch and TensorFlow.
  • 25
    AWS Elastic Fabric Adapter (EFA)
    Elastic Fabric Adapter (EFA) is a network interface for Amazon EC2 instances that enables customers to run applications requiring high levels of inter-node communications at scale on AWS. Its custom-built operating system (OS) bypass hardware interface enhances the performance of inter-instance communications, which is critical to scaling these applications. With EFA, High-Performance Computing (HPC) applications using the Message Passing Interface (MPI) and Machine Learning (ML) applications using NVIDIA Collective Communications Library (NCCL) can scale to thousands of CPUs or GPUs. As a result, you get the application performance of on-premises HPC clusters with the on-demand elasticity and flexibility of the AWS cloud. EFA is available as an optional EC2 networking feature that you can enable on any supported EC2 instance at no additional cost. Plus, it works with the most commonly used interfaces, APIs, and libraries for inter-node communications.
  • 26
    Azure Marketplace
    Azure Marketplace is a comprehensive online store that provides access to thousands of certified, ready-to-use software applications, services, and solutions from Microsoft and third-party vendors. It enables businesses to discover, purchase, and deploy software directly within the Azure cloud environment. The marketplace offers a wide range of products, including virtual machine images, AI and machine learning models, developer tools, security solutions, and industry-specific applications. With flexible pricing options like pay-as-you-go, free trials, and subscription models, Azure Marketplace simplifies the procurement process and centralizes billing through a single Azure invoice. It supports seamless integration with Azure services, enabling organizations to enhance their cloud infrastructure, streamline workflows, and accelerate digital transformation initiatives.
  • 27
    EasyODM

    EasyODM

    EasyODM

    Our automated visual quality inspection software optimizes efficiency, minimizes defects, and significantly reduces production costs, resulting in substantial annual savings for our valued clients. EasyODM combines the power of computer vision and machine learning to revolutionize quality inspection, enabling machines to unlock the cognitive capabilities of AI and transform data into actionable insights. EasyODM combines the power of computer vision and machine learning to revolutionize quality inspection, enabling machines to unlock the cognitive capabilities of AI and transform data into actionable insights. Our automated visual quality inspection software optimizes efficiency, minimizes defects, and significantly reduces production costs, resulting in substantial annual savings for our valued clients.
  • 28
    PaliGemma 2
    PaliGemma 2, the next evolution in tunable vision-language models, builds upon the performant Gemma 2 models, adding the power of vision and making it easier than ever to fine-tune for exceptional performance. With PaliGemma 2, these models can see, understand, and interact with visual input, opening up a world of new possibilities. It offers scalable performance with multiple model sizes (3B, 10B, 28B parameters) and resolutions (224px, 448px, 896px). PaliGemma 2 generates detailed, contextually relevant captions for images, going beyond simple object identification to describe actions, emotions, and the overall narrative of the scene. Our research demonstrates leading performance in chemical formula recognition, music score recognition, spatial reasoning, and chest X-ray report generation, as detailed in the technical report. Upgrading to PaliGemma 2 is a breeze for existing PaliGemma users.
  • 29
    VLLM

    VLLM

    VLLM

    VLLM is a high-performance library designed to facilitate efficient inference and serving of Large Language Models (LLMs). Originally developed in the Sky Computing Lab at UC Berkeley, vLLM has evolved into a community-driven project with contributions from both academia and industry. It offers state-of-the-art serving throughput by efficiently managing attention key and value memory through its PagedAttention mechanism. It supports continuous batching of incoming requests and utilizes optimized CUDA kernels, including integration with FlashAttention and FlashInfer, to enhance model execution speed. Additionally, vLLM provides quantization support for GPTQ, AWQ, INT4, INT8, and FP8, as well as speculative decoding capabilities. Users benefit from seamless integration with popular Hugging Face models, support for various decoding algorithms such as parallel sampling and beam search, and compatibility with NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs, and more.
  • 30
    Intel Open Edge Platform
    The Intel Open Edge Platform simplifies the development, deployment, and scaling of AI and edge computing solutions on standard hardware with cloud-like efficiency. It provides a curated set of components and workflows that accelerate AI model creation, optimization, and application development. From vision models to generative AI and large language models (LLM), the platform offers tools to streamline model training and inference. By integrating Intel’s OpenVINO toolkit, it ensures enhanced performance on Intel CPUs, GPUs, and VPUs, allowing organizations to bring AI applications to the edge with ease.