Business Software for PyTorch - Page 3

Top Software that integrates with PyTorch as of July 2025 - Page 3

PyTorch Clear Filters
  • 1
    NodeShift

    NodeShift

    NodeShift

    We help you slash cloud costs so you can focus on building amazing solutions. Spin the globe and point at the map, NodeShift is available there too. Regardless of where you deploy, benefit from increased privacy. Your data is up and running even if an entire country’s electricity grid goes down. The ideal way for organizations young and old to ease their way into the distributed and affordable cloud at their own pace. The most affordable compute and GPU virtual machines at scale. The NodeShift platform aggregates multiple independent data centers across the world and a wide range of existing decentralized solutions under one hood such as Akash, Filecoin, ThreeFold, and many more, with an emphasis on affordable prices and a friendly UX. Payment for its cloud services is simple and straightforward, giving every business access to the same interfaces as the traditional cloud but with several key added benefits of decentralization such as affordability, privacy, and resilience.
    Starting Price: $19.98 per month
  • 2
    io.net

    io.net

    io.net

    Harness the power of global GPU resources with a single click. Instant, permissionless access to a global network of GPUs and CPUs. Spend significantly less on your GPU computing compared to the major public clouds or buying your own servers. Engage with the io.net cloud, customize your selection, and deploy within a matter of seconds. Get refunded whenever you choose to terminate your cluster, and always have access to a mix of cost and performance. Turn your GPU into a money-making machine with io.net, Our easy-to-use platform allows you to easily rent out your GPU. Profitable, transparent, and simple. Join the world's largest network of GPU clusters with sky-high returns. Earn significantly more on your GPU compute compared to even the best crypto mining pools. Always know how much you will earn and get paid the second the job is done. The more you invest in your infrastructure, the higher your returns are going to be.
    Starting Price: $0.34 per hour
  • 3
    Apolo

    Apolo

    Apolo

    Access readily available dedicated machines with pre-configured professional AI development tools, from dependable data centers at competitive prices. From HPC resources to an all-in-one AI platform with an integrated ML development toolkit, Apolo covers it all. Apolo can be deployed in a distributed architecture, as a dedicated enterprise cluster, or as a multi-tenant white-label solution to support dedicated instances or self-service cloud. Right out of the box, Apolo spins up a full-fledged AI-centric development environment with all the tools you need at your fingertips. Apolo manages and automates the infrastructure and processes for successful AI development at scale. Apolo's AI-centric services seamlessly stitch your on-prem and cloud resources, deploy pipelines, and integrate your open-source and commercial development tools. Apolo empowers enterprises with the tools and resources necessary to achieve breakthroughs in AI.
    Starting Price: $5.35 per hour
  • 4
    Comet LLM

    Comet LLM

    Comet LLM

    CometLLM is a tool to log and visualize your LLM prompts and chains. Use CometLLM to identify effective prompt strategies, streamline your troubleshooting, and ensure reproducible workflows. Log your prompts and responses, including prompt template, variables, timestamps and duration, and any metadata that you need. Visualize your prompts and responses in the UI. Log your chain execution down to the level of granularity that you need. Visualize your chain execution in the UI. Automatically tracks your prompts when using the OpenAI chat models. Track and analyze user feedback. Diff your prompts and chain execution in the UI. Comet LLM Projects have been designed to support you in performing smart analysis of your logged prompt engineering workflows. Each column header corresponds to a metadata attribute logged in the LLM project, so the exact list of the displayed default headers can vary across projects.
    Starting Price: Free
  • 5
    DagsHub

    DagsHub

    DagsHub

    DagsHub is a collaborative platform designed for data scientists and machine learning engineers to manage and streamline their projects. It integrates code, data, experiments, and models into a unified environment, facilitating efficient project management and team collaboration. Key features include dataset management, experiment tracking, model registry, and data and model lineage, all accessible through a user-friendly interface. DagsHub supports seamless integration with popular MLOps tools, allowing users to leverage their existing workflows. By providing a centralized hub for all project components, DagsHub enhances transparency, reproducibility, and efficiency in machine learning development. DagsHub is a platform for AI and ML developers that lets you manage and collaborate on your data, models, and experiments, alongside your code. DagsHub was particularly designed for unstructured data for example text, images, audio, medical imaging, and binary files.
    Starting Price: $9 per month
  • 6
    Amazon EC2 Trn1 Instances
    Amazon Elastic Compute Cloud (EC2) Trn1 instances, powered by AWS Trainium chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and latent diffusion models. Trn1 instances offer up to 50% cost-to-train savings over other comparable Amazon EC2 instances. You can use Trn1 instances to train 100B+ parameter DL and generative AI models across a broad set of applications, such as text summarization, code generation, question answering, image and video generation, recommendation, and fraud detection. The AWS Neuron SDK helps developers train models on AWS Trainium (and deploy models on the AWS Inferentia chips). It integrates natively with frameworks such as PyTorch and TensorFlow so that you can continue using your existing code and workflows to train models on Trn1 instances.
    Starting Price: $1.34 per hour
  • 7
    Amazon EC2 Inf1 Instances
    Amazon EC2 Inf1 instances are purpose-built to deliver high-performance and cost-effective machine learning inference. They provide up to 2.3 times higher throughput and up to 70% lower cost per inference compared to other Amazon EC2 instances. Powered by up to 16 AWS Inferentia chips, ML inference accelerators designed by AWS, Inf1 instances also feature 2nd generation Intel Xeon Scalable processors and offer up to 100 Gbps networking bandwidth to support large-scale ML applications. These instances are ideal for deploying applications such as search engines, recommendation systems, computer vision, speech recognition, natural language processing, personalization, and fraud detection. Developers can deploy their ML models on Inf1 instances using the AWS Neuron SDK, which integrates with popular ML frameworks like TensorFlow, PyTorch, and Apache MXNet, allowing for seamless migration with minimal code changes.
    Starting Price: $0.228 per hour
  • 8
    Amazon EC2 G5 Instances
    Amazon EC2 G5 instances are the latest generation of NVIDIA GPU-based instances that can be used for a wide range of graphics-intensive and machine-learning use cases. They deliver up to 3x better performance for graphics-intensive applications and machine learning inference and up to 3.3x higher performance for machine learning training compared to Amazon EC2 G4dn instances. Customers can use G5 instances for graphics-intensive applications such as remote workstations, video rendering, and gaming to produce high-fidelity graphics in real time. With G5 instances, machine learning customers get high-performance and cost-efficient infrastructure to train and deploy larger and more sophisticated models for natural language processing, computer vision, and recommender engine use cases. G5 instances deliver up to 3x higher graphics performance and up to 40% better price performance than G4dn instances. They have more ray tracing cores than any other GPU-based EC2 instance.
    Starting Price: $1.006 per hour
  • 9
    Amazon EC2 P4 Instances
    Amazon EC2 P4d instances deliver high performance for machine learning training and high-performance computing applications in the cloud. Powered by NVIDIA A100 Tensor Core GPUs, they offer industry-leading throughput and low-latency networking, supporting 400 Gbps instance networking. P4d instances provide up to 60% lower cost to train ML models, with an average of 2.5x better performance for deep learning models compared to previous-generation P3 and P3dn instances. Deployed in hyperscale clusters called Amazon EC2 UltraClusters, P4d instances combine high-performance computing, networking, and storage, enabling users to scale from a few to thousands of NVIDIA A100 GPUs based on project needs. Researchers, data scientists, and developers can utilize P4d instances to train ML models for use cases such as natural language processing, object detection and classification, and recommendation engines, as well as to run HPC applications like pharmaceutical discovery and more.
    Starting Price: $11.57 per hour
  • 10
    Amazon S3 Express One Zone
    Amazon S3 Express One Zone is a high-performance, single-Availability Zone storage class purpose-built to deliver consistent single-digit millisecond data access for your most frequently accessed data and latency-sensitive applications. It offers data access speeds up to 10 times faster and requests costs up to 50% lower than S3 Standard. With S3 Express One Zone, you can select a specific AWS Availability Zone within an AWS Region to store your data, allowing you to co-locate your storage and compute resources in the same Availability Zone to further optimize performance, which helps lower compute costs and run workloads faster. Data is stored in a different bucket type, an S3 directory bucket, which supports hundreds of thousands of requests per second. Additionally, you can use S3 Express One Zone with services such as Amazon SageMaker Model Training, Amazon Athena, Amazon EMR, and AWS Glue Data Catalog to accelerate your machine learning and analytics workloads.
  • 11
    AWS Marketplace
    AWS Marketplace is a curated digital catalog that enables customers to discover, purchase, deploy, and manage third-party software, data products, and services directly within the AWS ecosystem. It provides access to thousands of listings across categories like security, machine learning, business applications, and DevOps tools. With flexible pricing models such as pay-as-you-go, annual subscriptions, and free trials, AWS Marketplace simplifies procurement and billing by integrating costs into a single AWS invoice. It also supports rapid deployment with pre-configured software that can be launched on AWS infrastructure. This streamlined approach allows businesses to accelerate innovation, reduce time-to-market, and maintain better control over software usage and costs.
  • 12
    NeevCloud

    NeevCloud

    NeevCloud

    NeevCloud delivers cutting-edge GPU cloud solutions powered by NVIDIA GPUs like the H200, H100, GB200 NVL72, and many more offering unmatched performance for AI, HPC, and data-intensive workloads. Scale dynamically with flexible pricing and energy-efficient GPUs that reduce costs while maximizing output. Ideal for AI model training, scientific research, media production, and real-time analytics, NeevCloud ensures seamless integration and global accessibility. Experience unparalleled speed, scalability, and sustainability with NeevCloud GPU cloud solutions.
    Starting Price: $1.69/GPU/hour
  • 13
    voyage-3-large
    Voyage AI has unveiled voyage-3-large, a cutting-edge general-purpose and multilingual embedding model that leads across eight evaluated domains, including law, finance, and code, outperforming OpenAI-v3-large and Cohere-v3-English by averages of 9.74% and 20.71%, respectively. Enabled by Matryoshka learning and quantization-aware training, it supports embeddings of 2048, 1024, 512, and 256 dimensions, along with multiple quantization options such as 32-bit floating point, signed and unsigned 8-bit integer, and binary precision, significantly reducing vector database costs with minimal impact on retrieval quality. Notably, voyage-3-large offers a 32K-token context length, surpassing OpenAI's 8K and Cohere's 512 tokens. Evaluations across 100 datasets in diverse domains demonstrate its superior performance, with flexible precision and dimensionality options enabling substantial storage savings without compromising quality.
  • 14
    Gemma 3

    Gemma 3

    Google

    Gemma 3, introduced by Google, is a new AI model built on the Gemini 2.0 architecture, designed to offer enhanced performance and versatility. This model is capable of running efficiently on a single GPU or TPU, making it accessible for a wide range of developers and researchers. Gemma 3 focuses on improving natural language understanding, generation, and other AI-driven tasks. By offering scalable, powerful AI capabilities, Gemma 3 aims to advance the development of AI systems across various industries and use cases.
    Starting Price: Free
  • 15
    Huawei Cloud ModelArts
    ​ModelArts is a comprehensive AI development platform provided by Huawei Cloud, designed to streamline the entire AI workflow for developers and data scientists. It offers a full-lifecycle toolchain that includes data preprocessing, semi-automated data labeling, distributed training, automated model building, and flexible deployment options across cloud, edge, and on-premises environments. It supports popular open source AI frameworks such as TensorFlow, PyTorch, and MindSpore, and allows for the integration of custom algorithms tailored to specific needs. ModelArts features an end-to-end development pipeline that enhances collaboration across DataOps, MLOps, and DevOps, boosting development efficiency by up to 50%. It provides cost-effective AI computing resources with diverse specifications, enabling large-scale distributed training and inference acceleration.
  • 16
    Sesterce

    Sesterce

    Sesterce

    Sesterce Cloud offers the seamless and simplest way to launch a GPU Cloud instance, in bare-metal or virtualized mode. Our platform is tailored to allow early-stage teams to collaborate, for training or deploying AI solutions through a large range of NVIDIA and AMD products and optimized pricing, in over 50 regions worldwide. We also offer packaged, turnkey AI solutions for companies that want to rapidly deploy tools to automate their processes, or develop new sources of growth. All with integrated customer support, 99.9% uptime, unlimited storage capacity.
    Starting Price: $0.30/GPU/hr
  • 17
    Gemma 3n

    Gemma 3n

    Google DeepMind

    Gemma 3n is our state-of-the-art open multimodal model, engineered for on-device performance and efficiency. Made for responsive, low-footprint local inference, Gemma 3n empowers a new wave of intelligent, on-the-go applications. It analyzes and responds to combined images and text, with video and audio coming soon. Build intelligent, interactive features that put user privacy first and work reliably offline. Mobile-first architecture, with a significantly reduced memory footprint. Co-designed by Google's mobile hardware teams and industry leaders. 4B active memory footprint with the ability to create submodels for quality-latency tradeoffs. Gemma 3n is our first open model built on this groundbreaking, shared architecture, allowing developers to begin experimenting with this technology today in an early preview.
  • 18
    Skyportal

    Skyportal

    Skyportal

    Skyportal is a GPU cloud platform built for AI engineers, offering 50% less cloud costs and 100% GPU performance. It provides a cost-effective GPU infrastructure for machine learning workloads, eliminating unpredictable cloud bills and hidden fees. Skyportal has seamlessly integrated Kubernetes, Slurm, PyTorch, TensorFlow, CUDA, cuDNN, and NVIDIA Drivers, fully optimized for Ubuntu 22.04 LTS and 24.04 LTS, allowing users to focus on innovating and scaling with ease. It offers high-performance NVIDIA H100 and H200 GPUs optimized specifically for ML/AI workloads, with instant scalability and 24/7 expert support from a team that understands ML workflows and optimization. Skyportal's transparent pricing and zero egress fees provide predictable costs for AI infrastructure. Users can share their AI/ML project requirements and goals, deploy models within the infrastructure using familiar tools and frameworks, and scale their infrastructure as needed.
    Starting Price: $2.40 per hour
  • 19
    Segments.ai

    Segments.ai

    Segments.ai

    Segments.ai is an advanced data labeling platform that allows users to label data from multiple sensors simultaneously, improving the speed and accuracy of labeling for robotics and autonomous vehicle (AV) applications. It supports 2D and 3D labeling, including point cloud annotation, and enables users to label moving and stationary objects with ease. The platform leverages smart automation tools like batch mode and ML-powered object tracking, streamlining workflows and reducing manual labor. By fusing 2D image data with 3D point cloud data, Segments.ai offers a more efficient and consistent labeling process, ideal for high-volume, multi-sensor projects.
  • 20
    Fabric for Deep Learning (FfDL)
    Deep learning frameworks such as TensorFlow, PyTorch, Caffe, Torch, Theano, and MXNet have contributed to the popularity of deep learning by reducing the effort and skills needed to design, train, and use deep learning models. Fabric for Deep Learning (FfDL, pronounced “fiddle”) provides a consistent way to run these deep-learning frameworks as a service on Kubernetes. The FfDL platform uses a microservices architecture to reduce coupling between components, keep each component simple and as stateless as possible, isolate component failures, and allow each component to be developed, tested, deployed, scaled, and upgraded independently. Leveraging the power of Kubernetes, FfDL provides a scalable, resilient, and fault-tolerant deep-learning framework. The platform uses a distribution and orchestration layer that facilitates learning from a large amount of data in a reasonable amount of time across compute nodes.
  • 21
    Vectice

    Vectice

    Vectice

    Enabling all enterprise’s AI/ML initiatives to result in consistent and positive impact. Data scientists deserve a solution that makes all their experiments reproducible, every asset discoverable and simplifies knowledge transfer. Managers deserve a dedicated data science solution. to secure knowledge, automate reporting and simplify reviews and processes. Vectice is on a mission to revolutionize the way data science teams work and collaborate. The goal is to ensure consistent and positive AI/ML impact for all organizations. Vectice is bringing the first automated knowledge solution that is both data science aware, actionable and compatible with the tools data scientists use. Vectice auto-captures all the assets that AI/ML teams create such as datasets, code, notebooks, models or runs. Then it auto-generates documentation from business requirements to production deployments.
  • 22
    Exafunction

    Exafunction

    Exafunction

    Exafunction optimizes your deep learning inference workload, delivering up to a 10x improvement in resource utilization and cost. Focus on building your deep learning application, not on managing clusters and fine-tuning performance. In most deep learning applications, CPU, I/O, and network bottlenecks lead to poor utilization of GPU hardware. Exafunction moves any GPU code to highly utilized remote resources, even spot instances. Your core logic remains an inexpensive CPU instance. Exafunction is battle-tested on applications like large-scale autonomous vehicle simulation. These workloads have complex custom models, require numerical reproducibility, and use thousands of GPUs concurrently. Exafunction supports models from major deep learning frameworks and inference runtimes. Models and dependencies like custom operators are versioned so you can always be confident you’re getting the right results.
  • 23
    AI Squared

    AI Squared

    AI Squared

    Empower data scientists and application developers to collaborate on ML projects. Build, load, optimize and test models and integrations before publishing to end-users for integration into live applications. Reduce data science workload and improve decision-making by storing and sharing ML models across the organization. Publish updates to automatically push changes to models in production. Drive efficiency by instantly providing ML-powered insights within any web-based business application. Our self-service, drag-and-drop browser extension enables analysts and business users to integrate models into any web-based application with zero code.
  • 24
    Zepl

    Zepl

    Zepl

    Sync, search and manage all the work across your data science team. Zepl’s powerful search lets you discover and reuse models and code. Use Zepl’s enterprise collaboration platform to query data from Snowflake, Athena or Redshift and build your models in Python. Use pivoting and dynamic forms for enhanced interactions with your data using heatmap, radar, and Sankey charts. Zepl creates a new container every time you run your notebook, providing you with the same image each time you run your models. Invite team members to join a shared space and work together in real time or simply leave their comments on a notebook. Use fine-grained access controls to share your work. Allow others have read, edit, and run access as well as enable collaboration and distribution. All notebooks are auto-saved and versioned. You can name, manage and roll back all versions through an easy-to-use interface, and export seamlessly into Github.
  • 25
    Humtap

    Humtap

    Humtap

    It’s time to show the world a reshaped concept of social media, where real-time content creation is collaborative and accessible. Browse through live rooms, jump in and start co-creating with hundreds of room participants, or become a host and start your own room. Request to co-stream with a room’s host and use live voice filters like auto-tune. Create content in real-time as you’re streaming to your audiences! In Humtap Live you can record, curate, and broadcast clips. These short pieces of micro-entertainment can be either video, music, or audio. Entertain your audiences with a never-ending stream of bite-sized entertainment! Everyone has access to powerful live content creation tools, not just room hosts. Hop into a room and start creating clips right away, turn your voice into an instrument, transform audio recordings into new sounds, and record videos with music-reactive filters. Submit your creations to the host and watch them be broadcasted to the entire room.
  • 26
    Cerebrium

    Cerebrium

    Cerebrium

    Deploy all major ML frameworks such as Pytorch, Onnx, XGBoost etc with 1 line of code. Don't have your own models? Deploy our prebuilt models that have been optimised to run with sub-second latency. Fine-tune smaller models on particular tasks in order to decrease costs and latency while increasing performance. It takes just a few lines of code and don't worry about infrastructure, we got it. Integrate with top ML observability platforms in order to be alerted about feature or prediction drift, compare model versions and resolve issues quickly. Discover the root causes for prediction and feature drift to resolve degraded model performance. Understand which features are contributing most to the performance of your model.
    Starting Price: $ 0.00055 per second
  • 27
    NVIDIA AI Foundations
    Impacting virtually every industry, generative AI unlocks a new frontier of opportunities, for knowledge and creative workers, to solve today’s most important challenges. NVIDIA is powering generative AI through an impressive suite of cloud services, pre-trained foundation models, as well as cutting-edge frameworks, optimized inference engines, and APIs to bring intelligence to your enterprise applications. NVIDIA AI Foundations is a set of cloud services that advance enterprise-level generative AI and enable customization across use cases in areas such as text (NVIDIA NeMo™), visual content (NVIDIA Picasso), and biology (NVIDIA BioNeMo™). Unleash the full potential with NeMo, Picasso, and BioNeMo cloud services, powered by NVIDIA DGX™ Cloud, the AI supercomputer. Marketing copy, storyline creation, and global translation in many languages. For news, email, meeting minutes, and information synthesis.
  • 28
    Graphcore

    Graphcore

    Graphcore

    Build, train and deploy your models in the cloud, using the latest IPU AI systems and the frameworks you love, with our cloud partners. Allowing you to save on compute costs and seamlessly scale to massive IPU compute when you need it. Get started with IPUs today with on-demand pricing and free tier offerings with our cloud partners. We believe our Intelligence Processing Unit (IPU) technology will become the worldwide standard for machine intelligence compute. The Graphcore IPU is going to be transformative across all industries and sectors with a real potential for positive societal impact from drug discovery and disaster recovery to decarbonization. The IPU is a completely new processor, specifically designed for AI compute. The IPU’s unique architecture lets AI researchers undertake entirely new types of work, not possible using current technologies, to drive the next advances in machine intelligence.
  • 29
    Amazon SageMaker Debugger
    Optimize ML models by capturing training metrics in real-time and sending alerts when anomalies are detected. Automatically stop training processes when the desired accuracy is achieved to reduce the time and cost of training ML models. Automatically profile and monitor system resource utilization and send alerts when resource bottlenecks are identified to continuously improve resource utilization. Amazon SageMaker Debugger can reduce troubleshooting during training from days to minutes by automatically detecting and alerting you to remediate common training errors such as gradient values becoming too large or too small. Alerts can be viewed in Amazon SageMaker Studio or configured through Amazon CloudWatch. Additionally, the SageMaker Debugger SDK enables you to automatically detect new classes of model-specific errors such as data sampling, hyperparameter values, and out-of-bound values.
  • 30
    Amazon SageMaker Model Training
    Amazon SageMaker Model Training reduces the time and cost to train and tune machine learning (ML) models at scale without the need to manage infrastructure. You can take advantage of the highest-performing ML compute infrastructure currently available, and SageMaker can automatically scale infrastructure up or down, from one to thousands of GPUs. Since you pay only for what you use, you can manage your training costs more effectively. To train deep learning models faster, SageMaker distributed training libraries can automatically split large models and training datasets across AWS GPU instances, or you can use third-party libraries, such as DeepSpeed, Horovod, or Megatron. Efficiently manage system resources with a wide choice of GPUs and CPUs including P4d.24xl instances, which are the fastest training instances currently available in the cloud. Specify the location of data, indicate the type of SageMaker instances, and get started with a single click.