Best Data Management Software for Foundational

Compare the Top Data Management Software that integrates with Foundational as of October 2025

This a list of Data Management software that integrates with Foundational. Use the filters on the left to add additional filters for products that have integrations with Foundational. View the products that work with Foundational in the table below.

What is Data Management Software for Foundational?

Data management software systems are software platforms that help organize, store and analyze information. They provide a secure platform for data sharing and analysis with features such as reporting, automation, visualizations, and collaboration. Data management software can be customized to fit the needs of any organization by providing numerous user options to easily access or modify data. These systems enable organizations to keep track of their data more efficiently while reducing the risk of data loss or breaches for improved business security. Compare and read user reviews of the best Data Management software for Foundational currently available using the table below. This list is updated regularly.

  • 1
    Google Cloud BigQuery
    BigQuery is a serverless, multicloud data warehouse that simplifies the process of working with all types of data so you can focus on getting valuable business insights quickly. At the core of Google’s data cloud, BigQuery allows you to simplify data integration, cost effectively and securely scale analytics, share rich data experiences with built-in business intelligence, and train and deploy ML models with a simple SQL interface, helping to make your organization’s operations more data-driven. Gemini in BigQuery offers AI-driven tools for assistance and collaboration, such as code suggestions, visual data preparation, and smart recommendations designed to boost efficiency and reduce costs. BigQuery delivers an integrated platform featuring SQL, a notebook, and a natural language-based canvas interface, catering to data professionals with varying coding expertise. This unified workspace streamlines the entire analytics process.
    Starting Price: Free ($300 in free credits)
    View Software
    Visit Website
  • 2
    Looker

    Looker

    Google

    Looker, Google Cloud’s business intelligence platform, enables you to chat with your data. Organizations turn to Looker for self-service and governed BI, to build custom applications with trusted metrics, or to bring Looker modeling to their existing environment. The result is improved data engineering efficiency and true business transformation. Looker is reinventing business intelligence for the modern company. Looker works the way the web does: browser-based, its unique modeling language lets any employee leverage the work of your best data analysts. Operating 100% in-database, Looker capitalizes on the newest, fastest analytic databases—to get real results, in real time.
  • 3
    Tableau

    Tableau

    Salesforce

    Tableau, now enhanced with AI-powered capabilities and integrated with Salesforce, is an advanced analytics platform that helps businesses turn data into actionable insights. With Tableau Next, users can unlock the full potential of their data by accessing trusted AI-driven analytics. Whether deployed in the cloud, on-premises, or natively within Salesforce CRM, Tableau enables seamless data integration, powerful visualizations, and collaboration. The platform is designed to support organizations of all sizes in making data-driven decisions, while fostering a Data Culture through easy-to-use, intuitive tools for analysts, business leaders, IT leaders, and developers alike.
    Leader badge
    Starting Price: $75/user/month
  • 4
    Snowflake

    Snowflake

    Snowflake

    Snowflake is a comprehensive AI Data Cloud platform designed to eliminate data silos and simplify data architectures, enabling organizations to get more value from their data. The platform offers interoperable storage that provides near-infinite scale and access to diverse data sources, both inside and outside Snowflake. Its elastic compute engine delivers high performance for any number of users, workloads, and data volumes with seamless scalability. Snowflake’s Cortex AI accelerates enterprise AI by providing secure access to leading large language models (LLMs) and data chat services. The platform’s cloud services automate complex resource management, ensuring reliability and cost efficiency. Trusted by over 11,000 global customers across industries, Snowflake helps businesses collaborate on data, build data applications, and maintain a competitive edge.
    Starting Price: $2 compute/month
  • 5
    Apache Hive

    Apache Hive

    Apache Software Foundation

    The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage using SQL. Structure can be projected onto data already in storage. A command line tool and JDBC driver are provided to connect users to Hive. Apache Hive is an open source project run by volunteers at the Apache Software Foundation. Previously it was a subproject of Apache® Hadoop®, but has now graduated to become a top-level project of its own. We encourage you to learn about the project and contribute your expertise. Traditional SQL queries must be implemented in the MapReduce Java API to execute SQL applications and queries over distributed data. Hive provides the necessary SQL abstraction to integrate SQL-like queries (HiveQL) into the underlying Java without the need to implement queries in the low-level Java API.
  • 6
    Apache Kafka

    Apache Kafka

    The Apache Software Foundation

    Apache Kafka® is an open-source, distributed streaming platform. Scale production clusters up to a thousand brokers, trillions of messages per day, petabytes of data, hundreds of thousands of partitions. Elastically expand and contract storage and processing. Stretch clusters efficiently over availability zones or connect separate clusters across geographic regions. Process streams of events with joins, aggregations, filters, transformations, and more, using event-time and exactly-once processing. Kafka’s out-of-the-box Connect interface integrates with hundreds of event sources and event sinks including Postgres, JMS, Elasticsearch, AWS S3, and more. Read, write, and process streams of events in a vast array of programming languages.
  • 7
    Amazon Redshift
    More customers pick Amazon Redshift than any other cloud data warehouse. Redshift powers analytical workloads for Fortune 500 companies, startups, and everything in between. Companies like Lyft have grown with Redshift from startups to multi-billion dollar enterprises. No other data warehouse makes it as easy to gain new insights from all your data. With Redshift you can query petabytes of structured and semi-structured data across your data warehouse, operational database, and your data lake using standard SQL. Redshift lets you easily save the results of your queries back to your S3 data lake using open formats like Apache Parquet to further analyze from other analytics services like Amazon EMR, Amazon Athena, and Amazon SageMaker. Redshift is the world’s fastest cloud data warehouse and gets faster every year. For performance intensive workloads you can use the new RA3 instances to get up to 3x the performance of any cloud data warehouse.
    Starting Price: $0.25 per hour
  • 8
    Fivetran

    Fivetran

    Fivetran

    Fivetran is a leading data integration platform that centralizes an organization’s data from various sources to enable modern data infrastructure and drive innovation. It offers over 700 fully managed connectors to move data automatically, reliably, and securely from SaaS applications, databases, ERPs, and files to data warehouses and lakes. The platform supports real-time data syncs and scalable pipelines that fit evolving business needs. Trusted by global enterprises like Dropbox, JetBlue, and Pfizer, Fivetran helps accelerate analytics, AI workflows, and cloud migrations. It features robust security certifications including SOC 1 & 2, GDPR, HIPAA, and ISO 27001. Fivetran provides an easy-to-use, customizable platform that reduces engineering time and enables faster insights.
  • 9
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 10
    PostgreSQL

    PostgreSQL

    PostgreSQL Global Development Group

    PostgreSQL is a powerful, open-source object-relational database system with over 30 years of active development that has earned it a strong reputation for reliability, feature robustness, and performance. There is a wealth of information to be found describing how to install and use PostgreSQL through the official documentation. The open-source community provides many helpful places to become familiar with PostgreSQL, discover how it works, and find career opportunities. Learm more on how to engage with the community. The PostgreSQL Global Development Group has released an update to all supported versions of PostgreSQL, including 15.1, 14.6, 13.9, 12.13, 11.18, and 10.23. This release fixes 25 bugs reported over the last several months. This is the final release of PostgreSQL 10. PostgreSQL 10 will no longer receive security and bug fixes. If you are running PostgreSQL 10 in a production environment, we suggest that you make plans to upgrade.
  • 11
    Apache Spark

    Apache Spark

    Apache Software Foundation

    Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells. Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application. Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources. You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources.
  • 12
    Census

    Census

    Census

    Census is the operational analytics platform that syncs your data warehouse with all your favorite apps. Get your customer success, sales & marketing teams on the same page by keeping customer data in sync. No engineering favors required. Census automatically publishes SQL & dbt models from your warehouse without a line of code. Stop deciphering external APIs and maintaining custom scripts, just focus on the business outcomes. You don't want "yet another source of truth" when everything is already in your warehouse. Census works on top of your existing infrastructure. Just pick a destination app, map the data, and voila, you are done. Your data shouldn't be stuck in quarterly reports. Census empowers everyone in your business to take action. Live metrics in every app means better business operations, which leads to happier users & more revenue.
  • 13
    Apache Flink

    Apache Flink

    Apache Software Foundation

    Apache Flink is a framework and distributed processing engine for stateful computations over unbounded and bounded data streams. Flink has been designed to run in all common cluster environments, perform computations at in-memory speed and at any scale. Any kind of data is produced as a stream of events. Credit card transactions, sensor measurements, machine logs, or user interactions on a website or mobile application, all of these data are generated as a stream. Apache Flink excels at processing unbounded and bounded data sets. Precise control of time and state enable Flink’s runtime to run any kind of application on unbounded streams. Bounded streams are internally processed by algorithms and data structures that are specifically designed for fixed sized data sets, yielding excellent performance. Flink is designed to work well each of the previously listed resource managers.
  • 14
    Apache Airflow

    Apache Airflow

    The Apache Software Foundation

    Airflow is a platform created by the community to programmatically author, schedule and monitor workflows. Airflow has a modular architecture and uses a message queue to orchestrate an arbitrary number of workers. Airflow is ready to scale to infinity. Airflow pipelines are defined in Python, allowing for dynamic pipeline generation. This allows for writing code that instantiates pipelines dynamically. Easily define your own operators and extend libraries to fit the level of abstraction that suits your environment. Airflow pipelines are lean and explicit. Parametrization is built into its core using the powerful Jinja templating engine. No more command-line or XML black-magic! Use standard Python features to create your workflows, including date time formats for scheduling and loops to dynamically generate tasks. This allows you to maintain full flexibility when building your workflows.
  • Previous
  • You're on page 1
  • Next