Best Data Management Software for Apache Spark - Page 2

Compare the Top Data Management Software that integrates with Apache Spark as of December 2025 - Page 2

This a list of Data Management software that integrates with Apache Spark. Use the filters on the left to add additional filters for products that have integrations with Apache Spark. View the products that work with Apache Spark in the table below.

  • 1
    Kedro

    Kedro

    Kedro

    Kedro is the foundation for clean data science code. It borrows concepts from software engineering and applies them to machine-learning projects. A Kedro project provides scaffolding for complex data and machine-learning pipelines. You spend less time on tedious "plumbing" and focus instead on solving new problems. Kedro standardizes how data science code is created and ensures teams collaborate to solve problems easily. Make a seamless transition from development to production with exploratory code that you can transition to reproducible, maintainable, and modular experiments. A series of lightweight data connectors is used to save and load data across many different file formats and file systems.
    Starting Price: Free
  • 2
    Tabular

    Tabular

    Tabular

    Tabular is an open table store from the creators of Apache Iceberg. Connect multiple computing engines and frameworks. Decrease query time and storage costs by up to 50%. Centralize enforcement of data access (RBAC) policies. Connect any query engine or framework, including Athena, BigQuery, Redshift, Snowflake, Databricks, Trino, Spark, and Python. Smart compaction, clustering, and other automated data services reduce storage costs and query times by up to 50%. Unify data access at the database or table. RBAC controls are simple to manage, consistently enforced, and easy to audit. Centralize your security down to the table. Tabular is easy to use plus it features high-powered ingestion, performance, and RBAC under the hood. Tabular gives you the flexibility to work with multiple “best of breed” compute engines based on their strengths. Assign privileges at the data warehouse database, table, or column level.
    Starting Price: $100 per month
  • 3
    Apache Doris

    Apache Doris

    The Apache Software Foundation

    Apache Doris is a modern data warehouse for real-time analytics. It delivers lightning-fast analytics on real-time data at scale. Push-based micro-batch and pull-based streaming data ingestion within a second. Storage engine with real-time upsert, append and pre-aggregation. Optimize for high-concurrency and high-throughput queries with columnar storage engine, MPP architecture, cost based query optimizer, vectorized execution engine. Federated querying of data lakes such as Hive, Iceberg and Hudi, and databases such as MySQL and PostgreSQL. Compound data types such as Array, Map and JSON. Variant data type to support auto data type inference of JSON data. NGram bloomfilter and inverted index for text searches. Distributed design for linear scalability. Workload isolation and tiered storage for efficient resource management. Supports shared-nothing clusters as well as separation of storage and compute.
    Starting Price: Free
  • 4
    Hue

    Hue

    Hue

    Hue brings the best querying experience with the most intelligent autocomplete and query editor components. The tables and storage browsers leverage your existing data catalog knowledge transparently. Help users find the correct data among thousands of databases and self-document it. Assist users with their SQL queries and leverage rich previews for links, sharing from the editor directly in Slack. Several apps, each one specialized in a certain type of querying are available. Data sources can be explored first via the browsers. The editor shines for SQL queries. It comes with an intelligent autocomplete, risk alerts, and self-service troubleshooting. Dashboards focus on visualizing indexed data but can also query SQL databases. You can now search for certain cell values in the table and the results are highlighted. To make your SQL editing experience, Hue comes with one of the best SQL autocomplete on the planet.
    Starting Price: Free
  • 5
    Yandex Data Proc
    You select the size of the cluster, node capacity, and a set of services, and Yandex Data Proc automatically creates and configures Spark and Hadoop clusters and other components. Collaborate by using Zeppelin notebooks and other web apps via a UI proxy. You get full control of your cluster with root permissions for each VM. Install your own applications and libraries on running clusters without having to restart them. Yandex Data Proc uses instance groups to automatically increase or decrease computing resources of compute subclusters based on CPU usage indicators. Data Proc allows you to create managed Hive clusters, which can reduce the probability of failures and losses caused by metadata unavailability. Save time on building ETL pipelines and pipelines for training and developing models, as well as describing other iterative tasks. The Data Proc operator is already built into Apache Airflow.
    Starting Price: $0.19 per hour
  • 6
    StarRocks

    StarRocks

    StarRocks

    Whether you're working with a single table or multiple, you'll experience at least 300% better performance on StarRocks compared to other popular solutions. From streaming data to data capture, with a rich set of connectors, you can ingest data into StarRocks in real time for the freshest insights. A query engine that adapts to your use cases. Without moving your data or rewriting SQL, StarRocks provides the flexibility to scale your analytics on demand with ease. StarRocks enables a rapid journey from data to insight. StarRocks' performance is unmatched and provides a unified OLAP solution covering the most popular data analytics scenarios. Whether you're working with a single table or multiple, you'll experience at least 300% better performance on StarRocks compared to other popular solutions. StarRocks' built-in memory-and-disk-based caching framework is specifically designed to minimize the I/O overhead of fetching data from external storage to accelerate query performance.
    Starting Price: Free
  • 7
    Speedb

    Speedb

    Speedb

    The next-generation key-value storage engine.bSpeedb is 100% RocksDB compatible enhancing stability, efficiency, and overall performance. Join the Hive, Speedb’s open-source community, to interact, improve, and share knowledge and best practices on RocksDB. Speedb is a compatible alternative for LevelDB and RocksDB users who would like to take their application to the next level. When using event streaming platforms like Kafka, Flink, Spark, Splunk, Elastic, or others, consider using Speedb to enhance its performance. The increase in metadata in modern data sets is causing significant performance issues for many applications. With Speedb you can keep costs low and ensure your applications continue to run smoothly even under heavy loads. When it comes to making a choice to upgrade or deploy a new key-value store with your platform, Speedb is up for the challenge. By seamlessly integrating Speedb's advanced key-value storage engine with your projects, you'll experience immediate relief.
    Starting Price: Free
  • 8
    Apache Phoenix

    Apache Phoenix

    Apache Software Foundation

    Apache Phoenix enables OLTP and operational analytics in Hadoop for low-latency applications by combining the best of both worlds. The power of standard SQL and JDBC APIs with full ACID transaction capabilities and the flexibility of late-bound, schema-on-read capabilities from the NoSQL world by leveraging HBase as its backing store. Apache Phoenix is fully integrated with other Hadoop products such as Spark, Hive, Pig, Flume, and Map Reduce. Become the trusted data platform for OLTP and operational analytics for Hadoop through well-defined, industry-standard APIs. Apache Phoenix takes your SQL query, compiles it into a series of HBase scans, and orchestrates the running of those scans to produce regular JDBC result sets. Direct use of the HBase API, along with coprocessors and custom filters, results in performance on the order of milliseconds for small queries, or seconds for tens of millions of rows.
    Starting Price: Free
  • 9
    Timbr.ai

    Timbr.ai

    Timbr.ai

    Timbr is the ontology-based semantic layer used by leading enterprises to make faster, better decisions with ontologies that transform structured data into AI-ready knowledge. By unifying enterprise data into a SQL-queryable knowledge graph, Timbr makes relationships, metrics, and context explicit, enabling both humans and AI to reason over data with accuracy and speed. Its open, modular architecture connects directly to existing data sources, virtualizing and governing them without replication. The result is a dynamic, easily accessible model that powers analytics, automation, and LLMs through SQL, APIs, SDKs, and natural language. Timbr lets organizations operationalize AI on their data - securely, transparently, and without dependence on proprietary stacks - maximizing data ROI and enabling teams to focus on solving problems instead of managing complexity.
    Starting Price: $599/month
  • 10
    Stackable

    Stackable

    Stackable

    The Stackable data platform was designed with openness and flexibility in mind. It provides you with a curated selection of the best open source data apps like Apache Kafka, Apache Druid, Trino, and Apache Spark. While other current offerings either push their proprietary solutions or deepen vendor lock-in, Stackable takes a different approach. All data apps work together seamlessly and can be added or removed in no time. Based on Kubernetes, it runs everywhere, on-prem or in the cloud. stackablectl and a Kubernetes cluster are all you need to run your first stackable data platform. Within minutes, you will be ready to start working with your data. Configure your one-line startup command right here. Similar to kubectl, stackablectl is designed to easily interface with the Stackable Data Platform. Use the command line utility to deploy and manage stackable data apps on Kubernetes. With stackablectl, you can create, delete, and update components.
    Starting Price: Free
  • 11
    Inferyx

    Inferyx

    Inferyx

    Move past application silos, cost overrun, and skill obsolescence to scale faster with our intelligent data and analytics platform. An intelligent platform built to perform data management and advanced analytics. Helps you scale across the technology landscape. Our architecture understands how data flows and transforms throughout its lifecycle. Enabling the development of future-proof enterprise AI applications. A highly modular and extensible platform that enables the handling of multifold components. Designed to scale with a multi-tenant architecture. Analyzing complex data structures is made easy using advanced data visualization. Resulting in enhanced enterprise AI app development in an intuitive and low-code predictive platform. Our unique hybrid multi-cloud platform is built using open source community software which makes it immensely adaptive, highly secure, and essentially low-cost.
    Starting Price: Free
  • 12
    Alteryx

    Alteryx

    Alteryx

    Step into a new era of analytics with the Alteryx AI Platform. Empower your organization with automated data preparation, AI-powered analytics, and approachable machine learning — all with embedded governance and security. Welcome to the future of data-driven decisions for every user, every team, every step of the way. Empower your teams with an easy, intuitive user experience allowing everyone to create analytic solutions that improve productivity, efficiency, and the bottom line. Build an analytics culture with an end-to-end cloud analytics platform and transform data into insights with self-service data prep, machine learning, and AI-generated insights. Reduce risk and ensure your data is fully protected with the latest security standards and certifications. Connect to your data and applications with open API standards.
  • 13
    Protegrity

    Protegrity

    Protegrity

    Our platform allows businesses to use data—including its application in advanced analytics, machine learning, and AI—to do great things without worrying about putting customers, employees, or intellectual property at risk. The Protegrity Data Protection Platform doesn't just secure data—it simultaneously classifies and discovers data while protecting it. You can't protect what you don't know you have. Our platform first classifies data, allowing users to categorize the type of data that can mostly be in the public domain. With those classifications established, the platform then leverages machine learning algorithms to discover that type of data. Classification and discovery finds the data that needs to be protected. Whether encrypting, tokenizing, or applying privacy methods, the platform secures the data behind the many operational systems that drive the day-to-day functions of business, as well as the analytical systems behind decision-making.
  • 14
    Querona

    Querona

    YouNeedIT

    We make BI & Big Data analytics work easier and faster. Our goal is to empower business users and make always-busy business and heavily loaded BI specialists less dependent on each other when solving data-driven business problems. If you have ever experienced a lack of data you needed, time to consuming report generation or long queue to your BI expert, consider Querona. Querona uses a built-in Big Data engine to handle growing data volumes. Repeatable queries can be cached or calculated in advance. Optimization needs less effort as Querona automatically suggests query improvements. Querona empowers business analysts and data scientists by putting self-service in their hands. They can easily discover and prototype data models, add new data sources, experiment with query optimization and dig in raw data. Less IT is needed. Now users can get live data no matter where it is stored. If databases are too busy to be queried live, Querona will cache the data.
  • 15
    Vaultspeed

    Vaultspeed

    VaultSpeed

    Experience faster data warehouse automation. The Vaultspeed automation tool is built on the Data Vault 2.0 standard and a decade of hands-on experience in data integration projects. Get support for all Data Vault 2.0 objects and implementation options. Generate quality code fast for all scenarios in a Data Vault 2.0 integration system. Plug Vaultspeed into your current set-up and leverage your investments in tools and knowledge. Get guaranteed compliance with the latest Data Vault 2.0 standard. We are in continuous interaction with Scalefree, the body of knowledge for the Data Vault 2.0 community. The Data Vault 2.0 modelling approach strips the model components to their bare minimum so they can be loaded through the same loading pattern (repeatable pattern) and have the same database structure. Vaultspeed works with a template system, which understands the structure of the object types, and easy-to-set configuration parameters.
    Starting Price: €600 per user per month
  • 16
    IBM Data Refinery
    Available in IBM Watson® Studio and Watson™ Knowledge Catalog, the data refinery tool saves data preparation time by quickly transforming large amounts of raw data into consumable, quality information that’s ready for analytics. Interactively discover, cleanse, and transform your data with over 100 built-in operations. No coding skills are required. Understand the quality and distribution of your data using dozens of built-in charts, graphs, and statistics. Automatically detect data types and business classifications. Access and explore data residing in a wide spectrum of data sources within your organization or the cloud. Automatically enforce policies set by data governance professionals. Schedule data flow executions for repeatable outcomes. Monitor results and receive notifications. Easily scale out via Apache Spark to apply transformation recipes on full data sets. No management of Apache Spark clusters needed.
  • 17
    PHEMI Health DataLab
    The PHEMI Trustworthy Health DataLab is a unique, cloud-based, integrated big data management system that allows healthcare organizations to enhance innovation and generate value from healthcare data by simplifying the ingestion and de-identification of data with NSA/military-grade governance, privacy, and security built-in. Conventional products simply lock down data, PHEMI goes further, solving privacy and security challenges and addressing the urgent need to secure, govern, curate, and control access to privacy-sensitive personal healthcare information (PHI). This improves data sharing and collaboration inside and outside of an enterprise—without compromising the privacy of sensitive information or increasing administrative burden. PHEMI Trustworthy Health DataLab can scale to any size of organization, is easy to deploy and manage, connects to hundreds of data sources, and integrates with popular data science and business analysis tools.
  • 18
    Actian Avalanche
    Actian Avalanche is a fully managed hybrid cloud data warehouse service designed from the ground up to deliver high performance and scale across all dimensions – data volume, concurrent user, and query complexity – at a fraction of the cost of alternative solutions. It is a true hybrid platform that can be deployed on-premises as well as on multiple clouds, including AWS, Azure, and Google Cloud, enabling you to migrate or offload applications and data to the cloud at your own pace. Actian Avalanche delivers the best price-performance in the industry outof-the-box without DBA tuning and optimization techniques. For the same cost as alternative solutions, you can benefit from substantially better performance or chose the same performance for significantly lower cost. For example, Avalanche provides up to 6x the price-performance advantage over Snowflake as measured by GigaOm’s TPC-H industry standard benchmark and even more against many of the appliance vendors.
  • 19
    Intel Tiber AI Studio
    Intel® Tiber™ AI Studio is a comprehensive machine learning operating system that unifies and simplifies the AI development process. The platform supports a wide range of AI workloads, providing a hybrid and multi-cloud infrastructure that accelerates ML pipeline development, model training, and deployment. With its native Kubernetes orchestration and meta-scheduler, Tiber™ AI Studio offers complete flexibility in managing on-prem and cloud resources. Its scalable MLOps solution enables data scientists to easily experiment, collaborate, and automate their ML workflows while ensuring efficient and cost-effective utilization of resources.
  • 20
    Oracle Machine Learning
    Machine learning uncovers hidden patterns and insights in enterprise data, generating new value for the business. Oracle Machine Learning accelerates the creation and deployment of machine learning models for data scientists using reduced data movement, AutoML technology, and simplified deployment. Increase data scientist and developer productivity and reduce their learning curve with familiar open source-based Apache Zeppelin notebook technology. Notebooks support SQL, PL/SQL, Python, and markdown interpreters for Oracle Autonomous Database so users can work with their language of choice when developing models. A no-code user interface supporting AutoML on Autonomous Database to improve both data scientist productivity and non-expert user access to powerful in-database algorithms for classification and regression. Data scientists gain integrated model deployment from the Oracle Machine Learning AutoML User Interface.
  • 21
    Lyftrondata

    Lyftrondata

    Lyftrondata

    Whether you want to build a governed delta lake, data warehouse, or simply want to migrate from your traditional database to a modern cloud data warehouse, do it all with Lyftrondata. Simply create and manage all of your data workloads on one platform by automatically building your pipeline and warehouse. Analyze it instantly with ANSI SQL, BI/ML tools, and share it without worrying about writing any custom code. Boost the productivity of your data professionals and shorten your time to value. Define, categorize, and find all data sets in one place. Share these data sets with other experts with zero codings and drive data-driven insights. This data sharing ability is perfect for companies that want to store their data once, share it with other experts, and use it multiple times, now and in the future. Define dataset, apply SQL transformations or simply migrate your SQL data processing logic to any cloud data warehouse.
  • 22
    Warp 10
    Warp 10 is a modular open source platform that collects, stores, and analyzes data from sensors. Shaped for the IoT with a flexible data model, Warp 10 provides a unique and powerful framework to simplify your processes from data collection to analysis and visualization, with the support of geolocated data in its core model (called Geo Time Series). Warp 10 is both a time series database and a powerful analytics environment, allowing you to make: statistics, extraction of characteristics for training models, filtering and cleaning of data, detection of patterns and anomalies, synchronization or even forecasts. The analysis environment can be implemented within a large ecosystem of software components such as Spark, Kafka Streams, Hadoop, Jupyter, Zeppelin and many more. It can also access data stored in many existing solutions, relational or NoSQL databases, search engines and S3 type object storage system.
  • 23
    Oracle Cloud Infrastructure Data Flow
    Oracle Cloud Infrastructure (OCI) Data Flow is a fully managed Apache Spark service to perform processing tasks on extremely large data sets without infrastructure to deploy or manage. This enables rapid application delivery because developers can focus on app development, not infrastructure management. OCI Data Flow handles infrastructure provisioning, network setup, and teardown when Spark jobs are complete. Storage and security are also managed, which means less work is required for creating and managing Spark applications for big data analysis. With OCI Data Flow, there are no clusters to install, patch, or upgrade, which saves time and operational costs for projects. OCI Data Flow runs each Spark job in private dedicated resources, eliminating the need for upfront capacity planning. With OCI Data Flow, IT only needs to pay for the infrastructure resources that Spark jobs use while they are running.
    Starting Price: $0.0085 per GB per hour
  • 24
    IBM Analytics for Apache Spark
    IBM Analytics for Apache Spark is a flexible and integrated Spark service that empowers data science professionals to ask bigger, tougher questions, and deliver business value faster. It’s an easy-to-use, always-on managed service with no long-term commitment or risk, so you can begin exploring right away. Access the power of Apache Spark with no lock-in, backed by IBM’s open-source commitment and decades of enterprise experience. A managed Spark service with Notebooks as a connector means coding and analytics are easier and faster, so you can spend more of your time on delivery and innovation. A managed Apache Spark services gives you easy access to the power of built-in machine learning libraries without the headaches, time and risk associated with managing a Sparkcluster independently.
  • 25
    SQL

    SQL

    SQL

    SQL is a domain-specific programming language used for accessing, managing, and manipulating relational databases and relational database management systems.
    Starting Price: Free
  • 26
    Progress DataDirect

    Progress DataDirect

    Progress Software

    Empowering applications with enterprise data is our passion here at Progress DataDirect. We offer cloud and on-premises data connectivity solutions across relational, NoSQL, Big Data, and SaaS data sources. Performance, reliability, and security are at the heart of everything we design for thousands of enterprises and the leading vendors in analytics, BI, and data management. Minimize your development costs with our portfolio of high-value connectors for a variety of data sources. Enjoy 24/7 world-class support and security for greater peace of mind. Connect with affordable, easy-to-use, and time-saving drivers for faster SQL access to your data. As a leader in data connectivity, keeping up with the evolving trends in space is our mission. But if we haven’t built the connector you need yet, reach out and we’ll help you develop the right solution. Embed connectivity in an application or service.
  • 27
    Equalum

    Equalum

    Equalum

    Equalum’s continuous data integration & streaming platform is the only solution that natively supports real-time, batch, and ETL use cases under one, unified platform with zero coding required. Make the move to real-time with a fully orchestrated, drag-and-drop, no-code UI. Experience rapid deployment, powerful transformations, and scalable streaming data pipelines in minutes. Multi-modal, robust, and scalable CDC enabling real-time streaming and data replication. Tuned for best-in-class performance no matter the source. The power of open-source big data frameworks, without the hassle. Equalum harnesses the scalability of open-source data frameworks such as Apache Spark and Kafka in the Platform engine to dramatically improve the performance of streaming and batch data processes. Organizations can increase data volumes while improving performance and minimizing system impact using this best-in-class infrastructure.
  • 28
    Telmai

    Telmai

    Telmai

    A low-code no-code approach to data quality. SaaS for flexibility, affordability, ease of integration, and efficient support. High standards of encryption, identity management, role-based access control, data governance, and compliance standards. Advanced ML models for detecting row-value data anomalies. Models will evolve and adapt to users' business and data needs. Add any number of data sources, records, and attributes. Well-equipped for unpredictable volume spikes. Support batch and streaming processing. Data is constantly monitored to provide real-time notifications, with zero impact on pipeline performance. Seamless boarding, integration, and investigation experience. Telmai is a platform for the Data Teams to proactively detect and investigate anomalies in real time. A no-code on-boarding. Connect to your data source and specify alerting channels. Telmai will automatically learn from data and alert you when there are unexpected drifts.
  • 29
    Baidu Sugar

    Baidu Sugar

    Baidu AI Cloud

    Sugar will charge fees according to the organization. A user can belong to multiple organizations, and there are multiple users in an organization. Multiple spaces can be created under the organization. Generally, it is recommended to divide spaces according to projects or teams. Data between spaces is not shared. Each space has its own independent permission management. When you use Sugar to analyze and visualize data, you need to specify the data source of the original data. Data source is the place where data is stored. Generally, it refers to the connection address (host, port, user name, password, etc.) of the database. A dashboard is a kind of visual page type, that mainly reflects cool visual effect, and is generally used to put on the large screen for real-time data visualization.
    Starting Price: $0.33 per year
  • 30
    Foundational

    Foundational

    Foundational

    Identify code and optimization issues in real-time, prevent data incidents pre-deploy, and govern data-impacting code changes end to end—from the operational database to the user-facing dashboard. Automated, column-level data lineage, from the operational database all the way to the reporting layer, ensures every dependency is analyzed. Foundational automates data contract enforcement by analyzing every repository from upstream to downstream, directly from source code. Use Foundational to proactively identify code and data issues, find and prevent issues, and create controls and guardrails. Foundational can be set up in minutes with no code changes required.