Best Data Management Software for Apache Spark

Compare the Top Data Management Software that integrates with Apache Spark as of December 2025

This a list of Data Management software that integrates with Apache Spark. Use the filters on the left to add additional filters for products that have integrations with Apache Spark. View the products that work with Apache Spark in the table below.

What is Data Management Software for Apache Spark?

Data management software systems are software platforms that help organize, store and analyze information. They provide a secure platform for data sharing and analysis with features such as reporting, automation, visualizations, and collaboration. Data management software can be customized to fit the needs of any organization by providing numerous user options to easily access or modify data. These systems enable organizations to keep track of their data more efficiently while reducing the risk of data loss or breaches for improved business security. Compare and read user reviews of the best Data Management software for Apache Spark currently available using the table below. This list is updated regularly.

  • 1
    DataHub

    DataHub

    DataHub

    DataHub Cloud is an event-driven AI & Data Context Platform that uses active metadata for real-time visibility across your entire data ecosystem. Unlike traditional data catalogs that provide outdated snapshots, DataHub Cloud instantly propagates changes, automatically enforces policies, and connects every data source across platforms with 100+ pre-built connectors. Built on an open source foundation with a thriving community of 13,000+ members, DataHub gives you unmatched flexibility to customize and extend without vendor lock-in. DataHub Cloud is a modern metadata platform with REST and GraphQL APIs that optimize performance for complex queries, essential for AI-ready data management and ML lifecycle support.
    Starting Price: $75,000
    View Software
    Visit Website
  • 2
    Vertex AI
    Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case. Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection. Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex.
    Starting Price: Free ($300 in free credits)
    View Software
    Visit Website
  • 3
    Jupyter Notebook

    Jupyter Notebook

    Project Jupyter

    The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, data visualization, machine learning, and much more.
  • 4
    Sifflet

    Sifflet

    Sifflet

    Automatically cover thousands of tables with ML-based anomaly detection and 50+ custom metrics. Comprehensive data and metadata monitoring. Exhaustive mapping of all dependencies between assets, from ingestion to BI. Enhanced productivity and collaboration between data engineers and data consumers. Sifflet seamlessly integrates into your data sources and preferred tools and can run on AWS, Google Cloud Platform, and Microsoft Azure. Keep an eye on the health of your data and alert the team when quality criteria aren’t met. Set up in a few clicks the fundamental coverage of all your tables. Configure the frequency of runs, their criticality, and even customized notifications at the same time. Leverage ML-based rules to detect any anomaly in your data. No need for an initial configuration. A unique model for each rule learns from historical data and from user feedback. Complement the automated rules with a library of 50+ templates that can be applied to any asset.
  • 5
    Apache Cassandra

    Apache Cassandra

    Apache Software Foundation

    The Apache Cassandra database is the right choice when you need scalability and high availability without compromising performance. Linear scalability and proven fault-tolerance on commodity hardware or cloud infrastructure make it the perfect platform for mission-critical data. Cassandra's support for replicating across multiple datacenters is best-in-class, providing lower latency for your users and the peace of mind of knowing that you can survive regional outages.
  • 6
    SingleStore

    SingleStore

    SingleStore

    SingleStore (formerly MemSQL) is a distributed, highly-scalable SQL database that can run anywhere. We deliver maximum performance for transactional and analytical workloads with familiar relational models. SingleStore is a scalable SQL database that ingests data continuously to perform operational analytics for the front lines of your business. Ingest millions of events per second with ACID transactions while simultaneously analyzing billions of rows of data in relational SQL, JSON, geospatial, and full-text search formats. SingleStore delivers ultimate data ingestion performance at scale and supports built in batch loading and real time data pipelines. SingleStore lets you achieve ultra fast query response across both live and historical data using familiar ANSI SQL. Perform ad hoc analysis with business intelligence tools, run machine learning algorithms for real-time scoring, perform geoanalytic queries in real time.
    Starting Price: $0.69 per hour
  • 7
    Dataiku

    Dataiku

    Dataiku

    Dataiku is an advanced data science and machine learning platform designed to enable teams to build, deploy, and manage AI and analytics projects at scale. It empowers users, from data scientists to business analysts, to collaboratively create data pipelines, develop machine learning models, and prepare data using both visual and coding interfaces. Dataiku supports the entire AI lifecycle, offering tools for data preparation, model training, deployment, and monitoring. The platform also includes integrations for advanced capabilities like generative AI, helping organizations innovate and deploy AI solutions across industries.
  • 8
    Metabase

    Metabase

    Metabase

    Meet the easy, open source way for everyone in your company to ask questions and learn from data. Connect to your data and get it in front of your team. Dashboards (like this one) are easy to build, share, and explore. Anyone on your team can get answers to questions about your data with just a few clicks, whether it's the CEO or Customer Support. When the questions get more complicated, SQL and our notebook editor are there for the data savvy. Visual joins, multiple aggregations and filtering steps give you the tools to dig deeper into your data. Add variables to your queries to create interactive visualizations that users can tweak and explore. Set up alerts and scheduled reports to get the right data in front of the right people at the right time. Start in a couple clicks with the hosted version, or use Docker to get up and running on your own for free. Connect to your existing data, invite your team, and you have a BI solution that would usually take a sales call.
  • 9
    Apache Hive

    Apache Hive

    Apache Software Foundation

    The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage using SQL. Structure can be projected onto data already in storage. A command line tool and JDBC driver are provided to connect users to Hive. Apache Hive is an open source project run by volunteers at the Apache Software Foundation. Previously it was a subproject of Apache® Hadoop®, but has now graduated to become a top-level project of its own. We encourage you to learn about the project and contribute your expertise. Traditional SQL queries must be implemented in the MapReduce Java API to execute SQL applications and queries over distributed data. Hive provides the necessary SQL abstraction to integrate SQL-like queries (HiveQL) into the underlying Java without the need to implement queries in the low-level Java API.
  • 10
    Archon Data Store

    Archon Data Store

    Platform 3 Solutions

    Archon Data Store is a next-generation enterprise data archiving platform designed to help organizations manage rapid data growth, reduce legacy application costs, and meet global compliance standards. Built on a modern Lakehouse architecture, Archon Data Store unifies data lakes and data warehouses to deliver secure, scalable, and analytics-ready archival storage. The platform supports on-premise, cloud, and hybrid deployments with AES-256 encryption, audit trails, metadata governance, and role-based access control. Archon Data Store offers intelligent storage tiering, high-performance querying, and seamless integration with BI tools. It enables efficient application decommissioning, cloud migration, and digital modernization while transforming archived data into a strategic asset. With Archon Data Store, organizations can ensure long-term compliance, optimize storage costs, and unlock AI-driven insights from historical data.
  • 11
    LogIsland

    LogIsland

    Hurence

    The LogIsland platform is at the heart of Hurence’s real-time analytics. It allows you to capture factory events (IIoT) but also events from your websites. According to Hurence a factory, or more generally a company, can be understood and supervised in real time through all the events it encounters: a sales order is an event, the production of a piece by a robot is an event, the delivery of a product is an event. Everything is actually an event. The LogIsland platform allows you to capture all these events, put them in a message bus for large volumes and analyze them in real time with plug and play analyzers ranging from simple (counting, alerts, recommendations), to the most sophisticated: artificial intelligence models for predictions and detection of anomalies or defects. Your Swiss knife for analyzing events in real time with custom analyzers for two verticals, web analytics and industry 4.0.
  • 12
    Dagster

    Dagster

    Dagster Labs

    Dagster is a next-generation orchestration platform for the development, production, and observation of data assets. Unlike other data orchestration solutions, Dagster provides you with an end-to-end development lifecycle. Dagster gives you control over your disparate data tools and empowers you to build, test, deploy, run, and iterate on your data pipelines. It makes you and your data teams more productive, your operations more robust, and puts you in complete control of your data processes as you scale. Dagster brings a declarative approach to the engineering of data pipelines. Your team defines the data assets required, quickly assessing their status and resolving any discrepancies. An assets-based model is clearer than a tasks-based one and becomes a unifying abstraction across the whole workflow.
    Starting Price: $0
  • 13
    Apache Iceberg

    Apache Iceberg

    Apache Software Foundation

    Iceberg is a high-performance format for huge analytic tables. Iceberg brings the reliability and simplicity of SQL tables to big data, while making it possible for engines like Spark, Trino, Flink, Presto, Hive and Impala to safely work with the same tables, at the same time. Iceberg supports flexible SQL commands to merge new data, update existing rows, and perform targeted deletes. Iceberg can eagerly rewrite data files for read performance, or it can use delete deltas for faster updates. Iceberg handles the tedious and error-prone task of producing partition values for rows in a table and skips unnecessary partitions and files automatically. No extra filters are needed for fast queries, and the table layout can be updated as data or queries change.
    Starting Price: Free
  • 14
    Oxla

    Oxla

    Oxla

    Purpose-built for compute, memory, and storage efficiency, Oxla is a self-hosted data warehouse optimized for large-scale, low-latency analytics with robust time-series support. Cloud data warehouses aren’t for everyone. At scale, long-term cloud compute costs outweigh short-term infrastructure savings, and regulated industries require full control over data beyond VPC and BYOC deployments. Oxla outperforms both legacy and cloud warehouses through efficiency, enabling scale for growing datasets with predictable costs, on-prem or in any cloud. Easily deploy, run, and maintain Oxla with Docker and YAML to power diverse workloads in a single, self-hosted data warehouse.
    Starting Price: $50 per CPU core / monthly
  • 15
    Style Intelligence
    Style Intelligence by InetSoft is a complete business intelligence (BI) software platform that empowers companies to explore, analyze, monitor, report, and collaborate on critical business and operational data from disparate sources in real time. Its top features include a real-time data mashup Data Block architecture, professional atomic data block modeling tool, and database write-back option. Robust and easy to use, Style Intelligence is also fully scalable and offers granular security, multi-tenancy support, and multiple integrations. InetSoft's cloud flexible business intelligence solution delivers the benefit of cloud computing and software-as-a-service while giving you the maximum level of control. In terms of software-as-a-service, BI software is unique because it inherently depends on the data not being embedded in the application. InetSoft provides free expert fast-start mentoring that delivers the expertise even when no in-house dedicated BI expert is available.
    Starting Price: $165/month
  • 16
    Instaclustr

    Instaclustr

    Instaclustr

    Instaclustr is the Open Source-as-a-Service company, delivering reliability at scale. We operate an automated, proven, and trusted managed environment, providing database, analytics, search, and messaging. We enable companies to focus internal development and operational resources on building cutting edge customer-facing applications. Instaclustr works with cloud providers including AWS, Heroku, Azure, IBM Cloud, and Google Cloud Platform. The company has SOC 2 certification and provides 24/7 customer support.
    Starting Price: $20 per node per month
  • 17
    IBM Cloud SQL Query
    Serverless, interactive querying for analyzing data in IBM Cloud Object Storage. Query your data directly where it is stored, there's no ETL, no databases, and no infrastructure to manage. IBM Cloud SQL Query uses Apache Spark, an open-source, fast, extensible, in-memory data processing engine optimized for low latency and ad hoc analysis of data. No ETL or schema definition needed to enable SQL queries. Analyze data where it sits in IBM Cloud Object Storage using our query editor and REST API. Run as many queries as you need; with pay-per-query pricing, you pay only for the data scan. Compress or partition data to drive savings and performance. IBM Cloud SQL Query is highly available and executes queries using compute resources across multiple facilities. IBM Cloud SQL Query supports a variety of data formats such as CSV, JSON and Parquet, and allows for standard ANSI SQL.
    Starting Price: $5.00/Terabyte-Month
  • 18
    PubSub+ Platform
    Solace PubSub+ Platform helps enterprises design, deploy and manage event-driven systems across hybrid and multi-cloud and IoT environments so they can be more event-driven and operate in real-time. The PubSub+ Platform includes the powerful PubSub+ Event Brokers, event management capabilities with PubSub+ Event Portal, as well as monitoring and integration capabilities all available via a single cloud console. PubSub+ allows easy creation of an event mesh, an interconnected network of event brokers, allowing for seamless and dynamic data movement across highly distributed network environments. PubSub+ Event Brokers can be deployed as fully managed cloud services, self-managed software in private cloud or on-premises environments, or as turnkey hardware appliances for unparalleled performance and low TCO. PubSub+ Event Portal is a complimentary toolset for design and governance of event-driven systems including both Solace and Kafka-based event broker environments.
  • 19
    Coginiti

    Coginiti

    Coginiti

    Coginiti, the AI-enabled enterprise data workspace, empowers everyone to get consistent answers fast to any business question. Accelerating the analytic development lifecycle from development to certification, Coginiti makes it easy for you to search and find approved metrics for your use case. Coginiti integrates all the functionality you need to build, approve, version, and curate analytics across all business domains for reuse, all while adhering to your data governance policy and standards. Data and analytic teams in the insurance, financial services, healthcare, and retail/consumer package goods industries trust Coginiti’s collaborative data workspace to deliver value to their customers.
    Starting Price: $189/user/year
  • 20
    Rational BI

    Rational BI

    Rational BI

    Spend less time preparing your data and more time analyzing it. Not only can you build better looking and more accurate reports, you can centralize all your data gathering, analytics and data science in a single interface, accessible to everyone in the organization. Import all your data no matter where it lives. Whether you’re looking to build scheduled reports from your Excel files, cross-reference data between files and databases or turn your data into SQL queryable databases, Rational BI gives you all the tools you need. Discover the signals hidden in your data, make it available without delay and move ahead of your competition. Magnify the analytics capabilities of your organization through business intelligence that makes it easy to find the latest up-to-date data and analyze it through an interface that delights both data scientists and casual data consumers.
    Starting Price: $129 per month
  • 21
    Azure Data Science Virtual Machines
    DSVMs are Azure Virtual Machine images, pre-installed, configured and tested with several popular tools that are commonly used for data analytics, machine learning and AI training. Consistent setup across team, promote sharing and collaboration, Azure scale and management, Near-Zero Setup, full cloud-based desktop for data science. Quick, Low friction startup for one to many classroom scenarios and online courses. Ability to run analytics on all Azure hardware configurations with vertical and horizontal scaling. Pay only for what you use, when you use it. Readily available GPU clusters with Deep Learning tools already pre-configured. Examples, templates and sample notebooks built or tested by Microsoft are provided on the VMs to enable easy onboarding to the various tools and capabilities such as Neural Networks (PYTorch, Tensorflow, etc.), Data Wrangling, R, Python, Julia, and SQL Server.
    Starting Price: $0.005
  • 22
    Riak TS
    Riak® TS is the only enterprise-grade NoSQL time series database optimized specifically for IoT and Time Series data. It ingests, transforms, stores, and analyzes massive amounts of time series data. Riak TS is engineered to be faster than Cassandra. The Riak TS masterless architecture is designed to read and write data even in the event of hardware failures or network partitions. Data is evenly distributed across the Riak ring and, by default, there are three replicas of your data. This ensures at least one copy of your data is available for read operations. Riak TS is a distributed system with no central coordinator. It is easy to set up and operate. The masterless architecture makes it easy to add and remove nodes from a cluster. The masterless architecture of Riak TS makes it easy to add and remove nodes from your cluster. You can achieve predictable and near-linear scale by adding nodes using commodity hardware.
    Starting Price: $0
  • 23
    IBM Analytics Engine
    IBM Analytics Engine provides an architecture for Hadoop clusters that decouples the compute and storage tiers. Instead of a permanent cluster formed of dual-purpose nodes, the Analytics Engine allows users to store data in an object storage layer such as IBM Cloud Object Storage and spins up clusters of computing notes when needed. Separating compute from storage helps to transform the flexibility, scalability and maintainability of big data analytics platforms. Build on an ODPi compliant stack with pioneering data science tools with the broader Apache Hadoop and Apache Spark ecosystem. Define clusters based on your application's requirements. Choose the appropriate software pack, version, and size of the cluster. Use as long as required and delete as soon as an application finishes jobs. Configure clusters with third-party analytics libraries and packages. Deploy workloads from IBM Cloud services like machine learning.
    Starting Price: $0.014 per hour
  • 24
    Prophecy

    Prophecy

    Prophecy

    Prophecy enables many more users - including visual ETL developers and Data Analysts. All you need to do is point-and-click and write a few SQL expressions to create your pipelines. As you use the Low-Code designer to build your workflows - you are developing high quality, readable code for Spark and Airflow that is committed to your Git. Prophecy gives you a gem builder - for you to quickly develop and rollout your own Frameworks. Examples are Data Quality, Encryption, new Sources and Targets that extend the built-in ones. Prophecy provides best practices and infrastructure as managed services – making your life and operations simple! With Prophecy, your workflows are high performance and use scale-out performance & scalability of the cloud.
    Starting Price: $299 per month
  • 25
    Comet

    Comet

    Comet

    Manage and optimize models across the entire ML lifecycle, from experiment tracking to monitoring models in production. Achieve your goals faster with the platform built to meet the intense demands of enterprise teams deploying ML at scale. Supports your deployment strategy whether it’s private cloud, on-premise servers, or hybrid. Add two lines of code to your notebook or script and start tracking your experiments. Works wherever you run your code, with any machine learning library, and for any machine learning task. Easily compare experiments—code, hyperparameters, metrics, predictions, dependencies, system metrics, and more—to understand differences in model performance. Monitor your models during every step from training to production. Get alerts when something is amiss, and debug your models to address the issue. Increase productivity, collaboration, and visibility across all teams and stakeholders.
    Starting Price: $179 per user per month
  • 26
    DQOps

    DQOps

    DQOps

    DQOps is an open-source data quality platform designed for data quality and data engineering teams that makes data quality visible to business sponsors. The platform provides an efficient user interface to quickly add data sources, configure data quality checks, and manage issues. DQOps comes with over 150 built-in data quality checks, but you can also design custom checks to detect any business-relevant data quality issues. The platform supports incremental data quality monitoring to support analyzing data quality of very big tables. Track data quality KPI scores using our built-in or custom dashboards to show progress in improving data quality to business sponsors. DQOps is DevOps-friendly, allowing you to define data quality definitions in YAML files stored in Git, run data quality checks directly from your data pipelines, or automate any action with a Python Client. DQOps works locally or as a SaaS platform.
    Starting Price: $499 per month
  • 27
    ELCA Smart Data Lake Builder
    Classical Data Lakes are often reduced to basic but cheap raw data storage, neglecting significant aspects like transformation, data quality and security. These topics are left to data scientists, who end up spending up to 80% of their time acquiring, understanding and cleaning data before they can start using their core competencies. In addition, classical Data Lakes are often implemented by separate departments using different standards and tools, which makes it harder to implement comprehensive analytical use cases. Smart Data Lakes solve these various issues by providing architectural and methodical guidelines, together with an efficient tool to build a strong high-quality data foundation. Smart Data Lakes are at the core of any modern analytics platform. Their structure easily integrates prevalent Data Science tools and open source technologies, as well as AI and ML. Their storage is cheap and scalable, supporting both unstructured data and complex data structures.
    Starting Price: Free
  • 28
    BigLake

    BigLake

    Google

    BigLake is a storage engine that unifies data warehouses and lakes by enabling BigQuery and open-source frameworks like Spark to access data with fine-grained access control. BigLake provides accelerated query performance across multi-cloud storage and open formats such as Apache Iceberg. Store a single copy of data with uniform features across data warehouses & lakes. Fine-grained access control and multi-cloud governance over distributed data. Seamless integration with open-source analytics tools and open data formats. Unlock analytics on distributed data regardless of where and how it’s stored, while choosing the best analytics tools, open source or cloud-native over a single copy of data. Fine-grained access control across open source engines like Apache Spark, Presto, and Trino, and open formats such as Parquet. Performant queries over data lakes powered by BigQuery. Integrates with Dataplex to provide management at scale, including logical data organization.
    Starting Price: $5 per TB
  • 29
    HStreamDB
    A streaming database is purpose-built to ingest, store, process, and analyze massive data streams. It is a modern data infrastructure that unifies messaging, stream processing, and storage to help get value out of your data in real-time. Ingest massive amounts of data continuously generated from various sources, such as IoT device sensors. Store millions of data streams reliably in a specially designed distributed streaming data storage cluster. Consume data streams in real-time as fast as from Kafka by subscribing to topics in HStreamDB. With the permanent data stream storage, you can playback and consume data streams anytime. Process data streams based on event-time with the same familiar SQL syntax you use to query data in a relational database. You can use SQL to filter, transform, aggregate, and even join multiple data streams.
    Starting Price: Free
  • 30
    Scalytics Connect
    Scalytics Connect enables AI and ML to process and analyze data, makes it easier and more secure to use different data processing platforms at the same time. Built by the inventors of Apache Wayang, Scalytics Connect is the most enhanced data management platform, reducing the complexity of ETL data pipelines dramatically. Scalytics Connect is a data management and ETL platform that helps organizations unlock the power of their data, regardless of where it resides. It empowers businesses to break down data silos, simplify access, and gain valuable insights through a variety of features, including: - AI-powered ETL: Automates tasks like data extraction, transformation, and loading, freeing up your resources for more strategic work. - Unified Data Landscape: Breaks down data silos and provides a holistic view of all your data, regardless of its location or format. - Effortless Scaling: Handles growing data volumes with ease, so you never get bottlenecked by information overload
    Starting Price: $0
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • Next