RankLLMCastorini
|
||||||
Related Products
|
||||||
About
RankLLM is a Python toolkit for reproducible information retrieval research using rerankers, with a focus on listwise reranking. It offers a suite of rerankers, pointwise models like MonoT5, pairwise models like DuoT5, and listwise models compatible with vLLM, SGLang, or TensorRT-LLM. Additionally, it supports RankGPT and RankGemini variants, which are proprietary listwise rerankers. It includes modules for retrieval, reranking, evaluation, and response analysis, facilitating end-to-end workflows. RankLLM integrates with Pyserini for retrieval and provides integrated evaluation for multi-stage pipelines. It also includes a module for detailed analysis of input prompts and LLM responses, addressing reliability concerns with LLM APIs and non-deterministic behavior in Mixture-of-Experts (MoE) models. The toolkit supports various backends, including SGLang and TensorRT-LLM, and is compatible with a wide range of LLMs.
|
About
Vectara is LLM-powered search-as-a-service. The platform provides a complete ML search pipeline from extraction and indexing to retrieval, re-ranking and calibration. Every element of the platform is API-addressable. Developers can embed the most advanced NLP models for app and site search in minutes.
Vectara automatically extracts text from PDF and Office to JSON, HTML, XML, CommonMark, and many more. Encode at scale with cutting edge zero-shot models using deep neural networks optimized for language understanding. Segment data into any number of indexes storing vector encodings optimized for low latency and high recall. Recall candidate results from millions of documents using cutting-edge, zero-shot neural network models. Increase the precision of retrieved results with cross-attentional neural networks to merge and reorder results. Zero in on the true likelihoods that the retrieved response represents a probable answer to the query.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Academic researchers and developers seeking a solution offering tools for implementing and evaluating listwise reranking with large language models
|
Audience
Companies interested in a powerful AI neural search solution for sites, documents, and apps
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
Free
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationCastorini
Canada
github.com/castorini/rank_llm/
|
Company InformationVectara
Founded: 2020
United States
vectara.com
|
|||||
Alternatives |
Alternatives |
|||||
|
|
|
|||||
|
|
||||||
|
|
||||||
|
|
|
|||||
Categories |
Categories |
|||||
Integrations
Datavolo
Gemini
Gemini Enterprise
IBM watsonx.data
Langflow
Llama
Mistral AI
NVIDIA TensorRT
OpenAI
Python
|
Integrations
Datavolo
Gemini
Gemini Enterprise
IBM watsonx.data
Langflow
Llama
Mistral AI
NVIDIA TensorRT
OpenAI
Python
|
|||||
|
|
|