Related Products
|
||||||
About
Transition seamlessly between eager and graph modes with TorchScript, and accelerate the path to production with TorchServe. Scalable distributed training and performance optimization in research and production is enabled by the torch-distributed backend. A rich ecosystem of tools and libraries extends PyTorch and supports development in computer vision, NLP and more. PyTorch is well supported on major cloud platforms, providing frictionless development and easy scaling. Select your preferences and run the install command. Stable represents the most currently tested and supported version of PyTorch. This should be suitable for many users. Preview is available if you want the latest, not fully tested and supported, 1.10 builds that are generated nightly. Please ensure that you have met the prerequisites (e.g., numpy), depending on your package manager. Anaconda is our recommended package manager since it installs all dependencies.
|
About
TorchMetrics is a collection of 90+ PyTorch metrics implementations and an easy-to-use API to create custom metrics. A standardized interface to increase reproducibility. It reduces boilerplate. distributed-training compatible. It has been rigorously tested. Automatic accumulation over batches. Automatic synchronization between multiple devices. You can use TorchMetrics in any PyTorch model, or within PyTorch Lightning to enjoy additional benefits. Your data will always be placed on the same device as your metrics. You can log Metric objects directly in Lightning to reduce even more boilerplate. Similar to torch.nn, most metrics have both a class-based and a functional version. The functional versions implement the basic operations required for computing each metric. They are simple python functions that as input take torch.tensors and return the corresponding metric as a torch.tensor. Nearly all functional metrics have a corresponding class-based metric.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Researchers in need of an open source machine learning solution to accelerate research prototyping and production deployment
|
Audience
Anyone seeking a solution providing several PyTorch metrics implementations to create custom metrics
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationPyTorch
Founded: 2016
pytorch.org
|
Company InformationTorchMetrics
United States
torchmetrics.readthedocs.io/en/stable/
|
|||||
Alternatives |
Alternatives |
|||||
|
|
|
|||||
|
|
|
|||||
|
|
||||||
|
|
||||||
Categories |
Categories |
|||||
Integrations
Lightning AI
AWS Marketplace
Cerebrium
CodeQwen
EasyODM
Fabric for Deep Learning (FfDL)
Flower
Fuzzball
Gradient
Humtap
|
Integrations
Lightning AI
AWS Marketplace
Cerebrium
CodeQwen
EasyODM
Fabric for Deep Learning (FfDL)
Flower
Fuzzball
Gradient
Humtap
|
|||||
|
|
|