MuMicrosoft
|
Universal Sentence EncoderTensorflow
|
|||||
Related Products
|
||||||
About
Mu is a 330-million-parameter encoder–decoder language model designed to power the agent in Windows settings by mapping natural-language queries to Settings function calls, running fully on-device via NPUs at over 100 tokens per second while maintaining high accuracy. Drawing on Phi Silica optimizations, Mu’s encoder–decoder architecture reuses a fixed-length latent representation to cut computation and memory overhead, yielding 47 percent lower first-token latency and 4.7× higher decoding speed on Qualcomm Hexagon NPUs compared to similar decoder-only models. Hardware-aware tuning, including a 2/3–1/3 encoder–decoder parameter split, weight sharing between input and output embeddings, Dual LayerNorm, rotary positional embeddings, and grouped-query attention, enables fast inference at over 200 tokens per second on devices like Surface Laptop 7 and sub-500 ms response times for settings queries.
|
About
The Universal Sentence Encoder (USE) encodes text into high-dimensional vectors that can be utilized for tasks such as text classification, semantic similarity, and clustering. It offers two model variants: one based on the Transformer architecture and another on Deep Averaging Network (DAN), allowing a balance between accuracy and computational efficiency. The Transformer-based model captures context-sensitive embeddings by processing the entire input sequence simultaneously, while the DAN-based model computes embeddings by averaging word embeddings, followed by a feedforward neural network. These embeddings facilitate efficient semantic similarity calculations and enhance performance on downstream tasks with minimal supervised training data. The USE is accessible via TensorFlow Hub, enabling seamless integration into various applications.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Developers seeking a solution to navigate and configure system settings through natural language
|
Audience
Data scientists and machine learning engineers seeking a tool to optimize their natural language processing models with robust sentence embeddings
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationMicrosoft
Founded: 1975
United States
blogs.windows.com/windowsexperience/2025/06/23/introducing-mu-language-model-and-how-it-enabled-the-agent-in-windows-settings/
|
Company InformationTensorflow
Founded: 2015
United States
www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder
|
|||||
Alternatives |
Alternatives |
|||||
|
|
|
|||||
|
|
|
|||||
|
|
|
|||||
|
|
|
|||||
Categories |
Categories |
|||||
Integrations
Google Colab
TensorFlow
|
||||||
|
|
|