RayAnyscale
|
||||||
Related Products
|
||||||
About
Distributed training without changing your model code, determined takes care of provisioning machines, networking, data loading, and fault tolerance. Our open source deep learning platform enables you to train models in hours and minutes, not days and weeks. Instead of arduous tasks like manual hyperparameter tuning, re-running faulty jobs, and worrying about hardware resources. Our distributed training implementation outperforms the industry standard, requires no code changes, and is fully integrated with our state-of-the-art training platform. With built-in experiment tracking and visualization, Determined records metrics automatically, makes your ML projects reproducible and allows your team to collaborate more easily. Your researchers will be able to build on the progress of their team and innovate in their domain, instead of fretting over errors and infrastructure.
|
About
Develop on your laptop and then scale the same Python code elastically across hundreds of nodes or GPUs on any cloud, with no changes. Ray translates existing Python concepts to the distributed setting, allowing any serial application to be easily parallelized with minimal code changes. Easily scale compute-heavy machine learning workloads like deep learning, model serving, and hyperparameter tuning with a strong ecosystem of distributed libraries. Scale existing workloads (for eg. Pytorch) on Ray with minimal effort by tapping into integrations. Native Ray libraries, such as Ray Tune and Ray Serve, lower the effort to scale the most compute-intensive machine learning workloads, such as hyperparameter tuning, training deep learning models, and reinforcement learning. For example, get started with distributed hyperparameter tuning in just 10 lines of code. Creating distributed apps is hard. Ray handles all aspects of distributed execution.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Companies looking for an open source deep learning training platform that makes building models fast and easy
|
Audience
ML and AI Engineers, Software Developers
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationDetermined AI
United States
www.determined.ai/
|
Company InformationAnyscale
Founded: 2019
United States
ray.io
|
|||||
Alternatives |
Alternatives |
|||||
|
||||||
|
||||||
|
||||||
|
||||||
Categories |
Categories |
|||||
Integrations
Amazon SageMaker
Amazon Web Services (AWS)
Apache Airflow
Google Cloud Platform
MLflow
TensorFlow
Amazon EC2 Trn2 Instances
Apache Spark
Azure Kubernetes Service (AKS)
Dask
|
Integrations
Amazon SageMaker
Amazon Web Services (AWS)
Apache Airflow
Google Cloud Platform
MLflow
TensorFlow
Amazon EC2 Trn2 Instances
Apache Spark
Azure Kubernetes Service (AKS)
Dask
|
|||||
|
|