CaffeBAIR
|
||||||
Related Products
|
||||||
About
Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR) and by community contributors. Yangqing Jia created the project during his PhD at UC Berkeley. Caffe is released under the BSD 2-Clause license. Check out our web image classification demo! Expressive architecture encourages application and innovation. Models and optimization are defined by configuration without hard-coding. Switch between CPU and GPU by setting a single flag to train on a GPU machine then deploy to commodity clusters or mobile devices. Extensible code fosters active development. In Caffe’s first year, it has been forked by over 1,000 developers and had many significant changes contributed back. Thanks to these contributors the framework tracks the state-of-the-art in both code and models. Speed makes Caffe perfect for research experiments and industry deployment. Caffe can process over 60M images per day with a single NVIDIA K40 GPU.
|
About
The Intel® Deep Learning SDK is a set of tools for data scientists and software developers to develop, train, and deploy deep learning solutions. The SDK encompasses a training tool and a deployment tool that can be used separately or together in a complete deep learning workflow. Easily prepare training data, design models, and train models with automated experiments and advanced visualizations. Simplify the installation and usage of popular deep learning frameworks optimized for Intel® platforms. Easily prepare training data, design models, and train models with automated experiments and advanced visualizations. Simplify the installation and usage of popular deep learning frameworks optimized for Intel® platforms. The web user interface includes an easy to use wizard to create deep learning models, with tooltips to guide you through the entire process.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Anyone looking for an open-source deep learning framework with expression, speed and modularity
|
Audience
Data scientists and software developers who need a set of tools to develop, train and deploy deep learning solutions
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationBAIR
United States
caffe.berkeleyvision.org
|
Company InformationIntel
Founded: 1968
United States
software.intel.com/content/www/us/en/develop/articles/deep-learning-training-tool-release-notes.html
|
|||||
Alternatives |
Alternatives |
|||||
|
|
|
|||||
|
|
|
|||||
|
|
||||||
|
|
||||||
Categories |
Categories |
|||||
Deep Learning Features
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
|
Deep Learning Features
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
|
|||||
Integrations
AWS Elastic Fabric Adapter (EFA)
AWS Marketplace
Activeeon ProActive
Amazon Web Services (AWS)
Docker
Fabric for Deep Learning (FfDL)
Intel Tiber AI Studio
Lambda
NVIDIA DIGITS
OpenVINO
|
Integrations
AWS Elastic Fabric Adapter (EFA)
AWS Marketplace
Activeeon ProActive
Amazon Web Services (AWS)
Docker
Fabric for Deep Learning (FfDL)
Intel Tiber AI Studio
Lambda
NVIDIA DIGITS
OpenVINO
|
|||||
|
|
|