Azure AI SearchMicrosoft
|
RankLLMCastorini
|
|||||
Related Products
|
||||||
About
Deliver high-quality responses with a vector database built for advanced retrieval augmented generation (RAG) and modern search. Focus on exponential growth with an enterprise-ready vector database that comes with security, compliance, and responsible AI practices built in. Build better applications with sophisticated retrieval strategies backed by decades of research and customer validation. Quickly deploy your generative AI app with seamless platform and data integrations for data sources, AI models, and frameworks. Automatically upload data from a wide range of supported Azure and third-party sources. Streamline vector data processing with built-in extraction, chunking, enrichment, and vectorization, all in one flow. Support for multivector, hybrid, multilingual, and metadata filtering. Move beyond vector-only search with keyword match scoring, reranking, geospatial search, and autocomplete.
|
About
RankLLM is a Python toolkit for reproducible information retrieval research using rerankers, with a focus on listwise reranking. It offers a suite of rerankers, pointwise models like MonoT5, pairwise models like DuoT5, and listwise models compatible with vLLM, SGLang, or TensorRT-LLM. Additionally, it supports RankGPT and RankGemini variants, which are proprietary listwise rerankers. It includes modules for retrieval, reranking, evaluation, and response analysis, facilitating end-to-end workflows. RankLLM integrates with Pyserini for retrieval and provides integrated evaluation for multi-stage pipelines. It also includes a module for detailed analysis of input prompts and LLM responses, addressing reliability concerns with LLM APIs and non-deterministic behavior in Mixture-of-Experts (MoE) models. The toolkit supports various backends, including SGLang and TensorRT-LLM, and is compatible with a wide range of LLMs.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Companies and individuals wanting a tool to perform advanced search and retrieval operations
|
Audience
Academic researchers and developers seeking a solution offering tools for implementing and evaluating listwise reranking with large language models
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
$0.11 per hour
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationMicrosoft
Founded: 1975
United States
azure.microsoft.com/en-us/products/ai-services/ai-search/
|
Company InformationCastorini
Canada
github.com/castorini/rank_llm/
|
|||||
Alternatives |
Alternatives |
|||||
|
|
|
|||||
|
|
||||||
|
|
||||||
Categories |
Categories |
|||||
Integrations
Azure AI Foundry Agent Service
Azure AI Services
Azure Machine Learning
Azure Marketplace
Azure OpenAI Service
Cognee
Gemini
Gemini Enterprise
Llama
Microsoft Azure
|
Integrations
Azure AI Foundry Agent Service
Azure AI Services
Azure Machine Learning
Azure Marketplace
Azure OpenAI Service
Cognee
Gemini
Gemini Enterprise
Llama
Microsoft Azure
|
|||||
|
|
|