Amazon SageMakerAmazon
|
||||||
Related Products
|
||||||
About
Amazon SageMaker is an advanced machine learning service that provides an integrated environment for building, training, and deploying machine learning (ML) models. It combines tools for model development, data processing, and AI capabilities in a unified studio, enabling users to collaborate and work faster. SageMaker supports various data sources, such as Amazon S3 data lakes and Amazon Redshift data warehouses, while ensuring enterprise security and governance through its built-in features. The service also offers tools for generative AI applications, making it easier for users to customize and scale AI use cases. SageMaker’s architecture simplifies the AI lifecycle, from data discovery to model deployment, providing a seamless experience for developers.
|
About
Amazon SageMaker provides all the tools and libraries you need to build ML models, the process of iteratively trying different algorithms and evaluating their accuracy to find the best one for your use case. In Amazon SageMaker you can pick different algorithms, including over 15 that are built-in and optimized for SageMaker, and use over 150 pre-built models from popular model zoos available with a few clicks. SageMaker also offers a variety of model-building tools including Amazon SageMaker Studio Notebooks and RStudio where you can run ML models on a small scale to see results and view reports on their performance so you can come up with high-quality working prototypes. Amazon SageMaker Studio Notebooks help you build ML models faster and collaborate with your team. Amazon SageMaker Studio notebooks provide one-click Jupyter notebooks that you can start working within seconds. Amazon SageMaker also enables one-click sharing of notebooks.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Machine learning engineers, data scientists, and organizations seeking to develop, deploy, and scale AI solutions efficiently and securely
|
Audience
Enterprises in search of a solution to build machine learning models efficiently
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationAmazon
Founded: 1994
United States
aws.amazon.com/sagemaker/
|
Company InformationAmazon
Founded: 1994
United States
aws.amazon.com/sagemaker/build/
|
|||||
Alternatives |
Alternatives |
|||||
|
|
|
|||||
|
|
|
|||||
|
|
|
|||||
|
|
||||||
Categories |
Categories |
|||||
Data Labeling Features
Human-in-the-loop
Labeling Automation
Labeling Quality
Performance Tracking
Polygon, Rectangle, Line, Point
SDK
Supports Audio Files
Task Management
Team Collaboration
Training Data Management
|
||||||
Integrations
Amazon Web Services (AWS)
AWS Deep Learning Containers
AWS IAM Identity Center
Amazon Augmented AI (A2I)
Amazon EC2
Amazon EC2 Trn2 Instances
Amazon SageMaker Data Wrangler
Amazon SageMaker Pipelines
BentoML
Camunda
|
Integrations
Amazon Web Services (AWS)
AWS Deep Learning Containers
AWS IAM Identity Center
Amazon Augmented AI (A2I)
Amazon EC2
Amazon EC2 Trn2 Instances
Amazon SageMaker Data Wrangler
Amazon SageMaker Pipelines
BentoML
Camunda
|
|||||
|
|
|