Alternatives to Amazon SageMaker Model Building
Compare Amazon SageMaker Model Building alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Amazon SageMaker Model Building in 2024. Compare features, ratings, user reviews, pricing, and more from Amazon SageMaker Model Building competitors and alternatives in order to make an informed decision for your business.
-
1
Vertex AI
Google
Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case. Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection. -
2
Amazon SageMaker
Amazon
Amazon SageMaker is a fully managed service that provides every developer and data scientist with the ability to build, train, and deploy machine learning (ML) models quickly. SageMaker removes the heavy lifting from each step of the machine learning process to make it easier to develop high quality models. Traditional ML development is a complex, expensive, iterative process made even harder because there are no integrated tools for the entire machine learning workflow. You need to stitch together tools and workflows, which is time-consuming and error-prone. SageMaker solves this challenge by providing all of the components used for machine learning in a single toolset so models get to production faster with much less effort and at lower cost. Amazon SageMaker Studio provides a single, web-based visual interface where you can perform all ML development steps. SageMaker Studio gives you complete access, control, and visibility into each step required. -
3
Amazon SageMaker JumpStart
Amazon
Amazon SageMaker JumpStart is a machine learning (ML) hub that can help you accelerate your ML journey. With SageMaker JumpStart, you can access built-in algorithms with pretrained models from model hubs, pretrained foundation models to help you perform tasks such as article summarization and image generation, and prebuilt solutions to solve common use cases. In addition, you can share ML artifacts, including ML models and notebooks, within your organization to accelerate ML model building and deployment. SageMaker JumpStart provides hundreds of built-in algorithms with pretrained models from model hubs, including TensorFlow Hub, PyTorch Hub, HuggingFace, and MxNet GluonCV. You can also access built-in algorithms using the SageMaker Python SDK. Built-in algorithms cover common ML tasks, such as data classifications (image, text, tabular) and sentiment analysis. -
4
Amazon SageMaker Autopilot
Amazon
Amazon SageMaker Autopilot eliminates the heavy lifting of building ML models. You simply provide a tabular dataset and select the target column to predict, and SageMaker Autopilot will automatically explore different solutions to find the best model. You then can directly deploy the model to production with just one click or iterate on the recommended solutions to further improve the model quality. You can use Amazon SageMaker Autopilot even when you have missing data. SageMaker Autopilot automatically fills in the missing data, provides statistical insights about columns in your dataset, and automatically extracts information from non-numeric columns, such as date and time information from timestamps. -
5
Amazon SageMaker Clarify
Amazon
Amazon SageMaker Clarify provides machine learning (ML) developers with purpose-built tools to gain greater insights into their ML training data and models. SageMaker Clarify detects and measures potential bias using a variety of metrics so that ML developers can address potential bias and explain model predictions. SageMaker Clarify can detect potential bias during data preparation, after model training, and in your deployed model. For instance, you can check for bias related to age in your dataset or in your trained model and receive a detailed report that quantifies different types of potential bias. SageMaker Clarify also includes feature importance scores that help you explain how your model makes predictions and produces explainability reports in bulk or real time through online explainability. You can use these reports to support customer or internal presentations or to identify potential issues with your model. -
6
Amazon SageMaker Pipelines
Amazon
Using Amazon SageMaker Pipelines, you can create ML workflows with an easy-to-use Python SDK, and then visualize and manage your workflow using Amazon SageMaker Studio. You can be more efficient and scale faster by storing and reusing the workflow steps you create in SageMaker Pipelines. You can also get started quickly with built-in templates to build, test, register, and deploy models so you can get started with CI/CD in your ML environment quickly. Many customers have hundreds of workflows, each with a different version of the same model. With the SageMaker Pipelines model registry, you can track these versions in a central repository where it is easy to choose the right model for deployment based on your business requirements. You can use SageMaker Studio to browse and discover models, or you can access them through the SageMaker Python SDK. -
7
Amazon SageMaker Model Training reduces the time and cost to train and tune machine learning (ML) models at scale without the need to manage infrastructure. You can take advantage of the highest-performing ML compute infrastructure currently available, and SageMaker can automatically scale infrastructure up or down, from one to thousands of GPUs. Since you pay only for what you use, you can manage your training costs more effectively. To train deep learning models faster, SageMaker distributed training libraries can automatically split large models and training datasets across AWS GPU instances, or you can use third-party libraries, such as DeepSpeed, Horovod, or Megatron. Efficiently manage system resources with a wide choice of GPUs and CPUs including P4d.24xl instances, which are the fastest training instances currently available in the cloud. Specify the location of data, indicate the type of SageMaker instances, and get started with a single click.
-
8
Amazon SageMaker Studio Lab
Amazon
Amazon SageMaker Studio Lab is a free machine learning (ML) development environment that provides the compute, storage (up to 15GB), and security, all at no cost, for anyone to learn and experiment with ML. All you need to get started is a valid email address, you don’t need to configure infrastructure or manage identity and access or even sign up for an AWS account. SageMaker Studio Lab accelerates model building through GitHub integration, and it comes preconfigured with the most popular ML tools, frameworks, and libraries to get you started immediately. SageMaker Studio Lab automatically saves your work so you don’t need to restart in between sessions. It’s as easy as closing your laptop and coming back later. Free machine learning development environment that provides the computing, storage, and security to learn and experiment with ML. GitHub integration and preconfigured with the most popular ML tools, frameworks, and libraries so you can get started immediately. -
9
Amazon SageMaker Debugger
Amazon
Optimize ML models by capturing training metrics in real-time and sending alerts when anomalies are detected. Automatically stop training processes when the desired accuracy is achieved to reduce the time and cost of training ML models. Automatically profile and monitor system resource utilization and send alerts when resource bottlenecks are identified to continuously improve resource utilization. Amazon SageMaker Debugger can reduce troubleshooting during training from days to minutes by automatically detecting and alerting you to remediate common training errors such as gradient values becoming too large or too small. Alerts can be viewed in Amazon SageMaker Studio or configured through Amazon CloudWatch. Additionally, the SageMaker Debugger SDK enables you to automatically detect new classes of model-specific errors such as data sampling, hyperparameter values, and out-of-bound values. -
10
Amazon SageMaker Edge
Amazon
The SageMaker Edge Agent allows you to capture data and metadata based on triggers that you set so that you can retrain your existing models with real-world data or build new models. Additionally, this data can be used to conduct your own analysis, such as model drift analysis. We offer three options for deployment. GGv2 (~ size 100MB) is a fully integrated AWS IoT deployment mechanism. For those customers with a limited device capacity, we have a smaller built-in deployment mechanism within SageMaker Edge. For customers who have a preferred deployment mechanism, we support third party mechanisms that can be plugged into our user flow. Amazon SageMaker Edge Manager provides a dashboard so you can understand the performance of models running on each device across your fleet. The dashboard helps you visually understand overall fleet health and identify the problematic models through a dashboard in the console. -
11
Amazon SageMaker makes it easy to deploy ML models to make predictions (also known as inference) at the best price-performance for any use case. It provides a broad selection of ML infrastructure and model deployment options to help meet all your ML inference needs. It is a fully managed service and integrates with MLOps tools, so you can scale your model deployment, reduce inference costs, manage models more effectively in production, and reduce operational burden. From low latency (a few milliseconds) and high throughput (hundreds of thousands of requests per second) to long-running inference for use cases such as natural language processing and computer vision, you can use Amazon SageMaker for all your inference needs.
-
12
Amazon SageMaker Studio
Amazon
Amazon SageMaker Studio is an integrated development environment (IDE) that provides a single web-based visual interface where you can access purpose-built tools to perform all machine learning (ML) development steps, from preparing data to building, training, and deploying your ML models, improving data science team productivity by up to 10x. You can quickly upload data, create new notebooks, train and tune models, move back and forth between steps to adjust experiments, collaborate seamlessly within your organization, and deploy models to production without leaving SageMaker Studio. Perform all ML development steps, from preparing raw data to deploying and monitoring ML models, with access to the most comprehensive set of tools in a single web-based visual interface. Quickly move between steps of the ML lifecycle to fine-tune your models. Replay training experiments, tune model features and other inputs, and compare results, without leaving SageMaker Studio. -
13
Amazon SageMaker Data Wrangler reduces the time it takes to aggregate and prepare data for machine learning (ML) from weeks to minutes. With SageMaker Data Wrangler, you can simplify the process of data preparation and feature engineering, and complete each step of the data preparation workflow (including data selection, cleansing, exploration, visualization, and processing at scale) from a single visual interface. You can use SQL to select the data you want from a wide variety of data sources and import it quickly. Next, you can use the Data Quality and Insights report to automatically verify data quality and detect anomalies, such as duplicate rows and target leakage. SageMaker Data Wrangler contains over 300 built-in data transformations so you can quickly transform data without writing any code. Once you have completed your data preparation workflow, you can scale it to your full datasets using SageMaker data processing jobs; train, tune, and deploy models.
-
14
Amazon SageMaker Ground Truth
Amazon Web Services
Amazon SageMaker allows you to identify raw data such as images, text files, and videos; add informative labels and generate labeled synthetic data to create high-quality training data sets for your machine learning (ML) models. SageMaker offers two options, Amazon SageMaker Ground Truth Plus and Amazon SageMaker Ground Truth, which give you the flexibility to use an expert workforce to create and manage data labeling workflows on your behalf or manage your own data labeling workflows. data labeling. If you want the flexibility to create and manage your own personal and data labeling workflows, you can use SageMaker Ground Truth. SageMaker Ground Truth is a data labeling service that makes data labeling easy and gives you the option of using human annotators via Amazon Mechanical Turk, third-party providers, or your own private staff.Starting Price: $0.08 per month -
15
Amazon SageMaker Canvas
Amazon
Amazon SageMaker Canvas expands access to machine learning (ML) by providing business analysts with a visual interface that allows them to generate accurate ML predictions on their own, without requiring any ML experience or having to write a single line of code. Visual point-and-click interface to connect, prepare, analyze, and explore data for building ML models and generating accurate predictions. Automatically build ML models to run what-if analysis and generate single or bulk predictions with a few clicks. Boost collaboration between business analysts and data scientists by sharing, reviewing, and updating ML models across tools. Import ML models from anywhere and generate predictions directly in Amazon SageMaker Canvas. With Amazon SageMaker Canvas, you can import data from disparate sources, select values you want to predict, automatically prepare and explore data, and quickly and more easily build ML models. You can then analyze models and generate accurate predictions. -
16
With Amazon SageMaker Model Monitor, you can select the data you would like to monitor and analyze without the need to write any code. SageMaker Model Monitor lets you select data from a menu of options such as prediction output, and captures metadata such as timestamp, model name, and endpoint so you can analyze model predictions based on the metadata. You can specify the sampling rate of data capture as a percentage of overall traffic in the case of high volume real-time predictions, and the data is stored in your own Amazon S3 bucket. You can also encrypt this data, configure fine-grained security, define data retention policies, and implement access control mechanisms for secure access. Amazon SageMaker Model Monitor offers built-in analysis in the form of statistical rules, to detect drifts in data and model quality. You can also write custom rules and specify thresholds for each rule.
-
17
Amazon SageMaker Feature Store is a fully managed, purpose-built repository to store, share, and manage features for machine learning (ML) models. Features are inputs to ML models used during training and inference. For example, in an application that recommends a music playlist, features could include song ratings, listening duration, and listener demographics. Features are used repeatedly by multiple teams and feature quality is critical to ensure a highly accurate model. Also, when features used to train models offline in batch are made available for real-time inference, it’s hard to keep the two feature stores synchronized. SageMaker Feature Store provides a secured and unified store for feature use across the ML lifecycle. Store, share, and manage ML model features for training and inference to promote feature reuse across ML applications. Ingest features from any data source including streaming and batch such as application logs, service logs, clickstreams, sensors, etc.
-
18
AWS Deep Learning Containers
Amazon
Deep Learning Containers are Docker images that are preinstalled and tested with the latest versions of popular deep learning frameworks. Deep Learning Containers lets you deploy custom ML environments quickly without building and optimizing your environments from scratch. Deploy deep learning environments in minutes using prepackaged and fully tested Docker images. Build custom ML workflows for training, validation, and deployment through integration with Amazon SageMaker, Amazon EKS, and Amazon ECS. -
19
Modelbit
Modelbit
Don't change your day-to-day, works with Jupyter Notebooks and any other Python environment. Simply call modelbi.deploy to deploy your model, and let Modelbit carry it — and all its dependencies — to production. ML models deployed with Modelbit can be called directly from your warehouse as easily as calling a SQL function. They can also be called as a REST endpoint directly from your product. Modelbit is backed by your git repo. GitHub, GitLab, or home grown. Code review. CI/CD pipelines. PRs and merge requests. Bring your whole git workflow to your Python ML models. Modelbit integrates seamlessly with Hex, DeepNote, Noteable and more. Take your model straight from your favorite cloud notebook into production. Sick of VPC configurations and IAM roles? Seamlessly redeploy your SageMaker models to Modelbit. Immediately reap the benefits of Modelbit's platform with the models you've already built. -
20
Lambda GPU Cloud
Lambda
Train the most demanding AI, ML, and Deep Learning models. Scale from a single machine to an entire fleet of VMs with a few clicks. Start or scale up your Deep Learning project with Lambda Cloud. Get started quickly, save on compute costs, and easily scale to hundreds of GPUs. Every VM comes preinstalled with the latest version of Lambda Stack, which includes major deep learning frameworks and CUDA® drivers. In seconds, access a dedicated Jupyter Notebook development environment for each machine directly from the cloud dashboard. For direct access, connect via the Web Terminal in the dashboard or use SSH directly with one of your provided SSH keys. By building compute infrastructure at scale for the unique requirements of deep learning researchers, Lambda can pass on significant savings. Benefit from the flexibility of using cloud computing without paying a fortune in on-demand pricing when workloads rapidly increase.Starting Price: $1.25 per hour -
21
The single development environment for the entire data science workflow. Natively analyze your data with a reduction in context switching between services. Data to training at scale. Build and train models 5X faster, compared to traditional notebooks. Scale-up model development with simple connectivity to Vertex AI services. Simplified access to data and in-notebook access to machine learning with BigQuery, Dataproc, Spark, and Vertex AI integration. Take advantage of the power of infinite computing with Vertex AI training for experimentation and prototyping, to go from data to training at scale. Using Vertex AI Workbench you can implement your training, and deployment workflows on Vertex AI from one place. A Jupyter-based fully managed, scalable, enterprise-ready compute infrastructure with security controls and user management capabilities. Explore data and train ML models with easy connections to Google Cloud's big data solutions.Starting Price: $10 per GB
-
22
Amazon Bedrock
Amazon
The easiest way to build and scale generative AI applications with foundation models (FMs) Amazon Bedrock provides you the flexibility to choose from a wide range of FMs built by leading AI startups and Amazon so you can find the model that is best suited for what you are trying to get done. With Bedrock’s serverless experience, you can get started quickly, privately customize FMs with your own data, and easily integrate and deploy them into your applications using the AWS tools and capabilities you are familiar with (including integrations with Amazon SageMaker ML features like Experiments to test different models and Pipelines to manage your FMs at scale) without having to manage any infrastructure. Choose FMs from AI21 Labs, Anthropic, Stability AI, and Amazon to find the right FM for your use case. -
23
AWS Trainium
Amazon Web Services
AWS Trainium is the second-generation Machine Learning (ML) accelerator that AWS purpose built for deep learning training of 100B+ parameter models. Each Amazon Elastic Compute Cloud (EC2) Trn1 instance deploys up to 16 AWS Trainium accelerators to deliver a high-performance, low-cost solution for deep learning (DL) training in the cloud. Although the use of deep learning is accelerating, many development teams are limited by fixed budgets, which puts a cap on the scope and frequency of training needed to improve their models and applications. Trainium-based EC2 Trn1 instances solve this challenge by delivering faster time to train while offering up to 50% cost-to-train savings over comparable Amazon EC2 instances. -
24
VESSL AI
VESSL AI
Build, train, and deploy models faster at scale with fully managed infrastructure, tools, and workflows. Deploy custom AI & LLMs on any infrastructure in seconds and scale inference with ease. Handle your most demanding tasks with batch job scheduling, only paying with per-second billing. Optimize costs with GPU usage, spot instances, and built-in automatic failover. Train with a single command with YAML, simplifying complex infrastructure setups. Automatically scale up workers during high traffic and scale down to zero during inactivity. Deploy cutting-edge models with persistent endpoints in a serverless environment, optimizing resource usage. Monitor system and inference metrics in real-time, including worker count, GPU utilization, latency, and throughput. Efficiently conduct A/B testing by splitting traffic among multiple models for evaluation.Starting Price: $100 + compute/month -
25
IBM watsonx
IBM
Watsonx is our upcoming enterprise-ready AI and data platform designed to multiply the impact of AI across your business. The platform comprises three powerful components: the watsonx.ai studio for new foundation models, generative AI and machine learning; the watsonx.data fit-for-purpose store for the flexibility of a data lake and the performance of a data warehouse; plus the watsonx.governance toolkit, to enable AI workflows that are built with responsibility, transparency and explainability. Watsonx is our enterprise-ready AI and data platform designed to multiply the impact of AI across your business. The platform comprises three powerful products: the watsonx.ai studio for new foundation models, generative AI and machine learning; the watsonx.data fit-for-purpose data store, built on an open lakehouse architecture; and the watsonx.governance toolkit, to accelerate AI workflows that are built with responsibility, transparency and explainability. -
26
Deep Infra
Deep Infra
Powerful, self-serve machine learning platform where you can turn models into scalable APIs in just a few clicks. Sign up for Deep Infra account using GitHub or log in using GitHub. Choose among hundreds of the most popular ML models. Use a simple rest API to call your model. Deploy models to production faster and cheaper with our serverless GPUs than developing the infrastructure yourself. We have different pricing models depending on the model used. Some of our language models offer per-token pricing. Most other models are billed for inference execution time. With this pricing model, you only pay for what you use. There are no long-term contracts or upfront costs, and you can easily scale up and down as your business needs change. All models run on A100 GPUs, optimized for inference performance and low latency. Our system will automatically scale the model based on your needs.Starting Price: $0.70 per 1M input tokens -
27
Wallaroo.AI
Wallaroo.AI
Wallaroo facilitates the last-mile of your machine learning journey, getting ML into your production environment to impact the bottom line, with incredible speed and efficiency. Wallaroo is purpose-built from the ground up to be the easy way to deploy and manage ML in production, unlike Apache Spark, or heavy-weight containers. ML with up to 80% lower cost and easily scale to more data, more models, more complex models. Wallaroo is designed to enable data scientists to quickly and easily deploy their ML models against live data, whether to testing environments, staging, or prod. Wallaroo supports the largest set of machine learning training frameworks possible. You’re free to focus on developing and iterating on your models while letting the platform take care of deployment and inference at speed and scale. -
28
Google Cloud TPU
Google
Machine learning has produced business and research breakthroughs ranging from network security to medical diagnoses. We built the Tensor Processing Unit (TPU) in order to make it possible for anyone to achieve similar breakthroughs. Cloud TPU is the custom-designed machine learning ASIC that powers Google products like Translate, Photos, Search, Assistant, and Gmail. Here’s how you can put the TPU and machine learning to work accelerating your company’s success, especially at scale. Cloud TPU is designed to run cutting-edge machine learning models with AI services on Google Cloud. And its custom high-speed network offers over 100 petaflops of performance in a single pod, enough computational power to transform your business or create the next research breakthrough. Training machine learning models is like compiling code: you need to update often, and you want to do so as efficiently as possible. ML models need to be trained over and over as apps are built, deployed, and refined.Starting Price: $0.97 per chip-hour -
29
Azure Machine Learning
Microsoft
Accelerate the end-to-end machine learning lifecycle. Empower developers and data scientists with a wide range of productive experiences for building, training, and deploying machine learning models faster. Accelerate time to market and foster team collaboration with industry-leading MLOps—DevOps for machine learning. Innovate on a secure, trusted platform, designed for responsible ML. Productivity for all skill levels, with code-first and drag-and-drop designer, and automated machine learning. Robust MLOps capabilities that integrate with existing DevOps processes and help manage the complete ML lifecycle. Responsible ML capabilities – understand models with interpretability and fairness, protect data with differential privacy and confidential computing, and control the ML lifecycle with audit trials and datasheets. Best-in-class support for open-source frameworks and languages including MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R. -
30
Build, run and manage AI models, and optimize decisions at scale across any cloud. IBM Watson Studio empowers you to operationalize AI anywhere as part of IBM Cloud Pak® for Data, the IBM data and AI platform. Unite teams, simplify AI lifecycle management and accelerate time to value with an open, flexible multicloud architecture. Automate AI lifecycles with ModelOps pipelines. Speed data science development with AutoAI. Prepare and build models visually and programmatically. Deploy and run models through one-click integration. Promote AI governance with fair, explainable AI. Drive better business outcomes by optimizing decisions. Use open source frameworks like PyTorch, TensorFlow and scikit-learn. Bring together the development tools including popular IDEs, Jupyter notebooks, JupterLab and CLIs — or languages such as Python, R and Scala. IBM Watson Studio helps you build and scale AI with trust and transparency by automating AI lifecycle management.
-
31
Amazon EMR
Amazon
Amazon EMR is the industry-leading cloud big data platform for processing vast amounts of data using open-source tools such as Apache Spark, Apache Hive, Apache HBase, Apache Flink, Apache Hudi, and Presto. With EMR you can run Petabyte-scale analysis at less than half of the cost of traditional on-premises solutions and over 3x faster than standard Apache Spark. For short-running jobs, you can spin up and spin down clusters and pay per second for the instances used. For long-running workloads, you can create highly available clusters that automatically scale to meet demand. If you have existing on-premises deployments of open-source tools such as Apache Spark and Apache Hive, you can also run EMR clusters on AWS Outposts. Analyze data using open-source ML frameworks such as Apache Spark MLlib, TensorFlow, and Apache MXNet. Connect to Amazon SageMaker Studio for large-scale model training, analysis, and reporting. -
32
NVIDIA RAPIDS
NVIDIA
The RAPIDS suite of software libraries, built on CUDA-X AI, gives you the freedom to execute end-to-end data science and analytics pipelines entirely on GPUs. It relies on NVIDIA® CUDA® primitives for low-level compute optimization, but exposes that GPU parallelism and high-bandwidth memory speed through user-friendly Python interfaces. RAPIDS also focuses on common data preparation tasks for analytics and data science. This includes a familiar DataFrame API that integrates with a variety of machine learning algorithms for end-to-end pipeline accelerations without paying typical serialization costs. RAPIDS also includes support for multi-node, multi-GPU deployments, enabling vastly accelerated processing and training on much larger dataset sizes. Accelerate your Python data science toolchain with minimal code changes and no new tools to learn. Increase machine learning model accuracy by iterating on models faster and deploying them more frequently. -
33
GPUonCLOUD
GPUonCLOUD
Traditionally, deep learning, 3D modeling, simulations, distributed analytics, and molecular modeling take days or weeks time. However, with GPUonCLOUD’s dedicated GPU servers, it's a matter of hours. You may want to opt for pre-configured systems or pre-built instances with GPUs featuring deep learning frameworks like TensorFlow, PyTorch, MXNet, TensorRT, libraries e.g. real-time computer vision library OpenCV, thereby accelerating your AI/ML model-building experience. Among the wide variety of GPUs available to us, some of the GPU servers are best fit for graphics workstations and multi-player accelerated gaming. Instant jumpstart frameworks increase the speed and agility of the AI/ML environment with effective and efficient environment lifecycle management.Starting Price: $1 per hour -
34
AWS Neuron
Amazon Web Services
It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP). -
35
ClearML
ClearML
ClearML is the leading open source MLOps and AI platform that helps data science, ML engineering, and DevOps teams easily develop, orchestrate, and automate ML workflows at scale. Our frictionless, unified, end-to-end MLOps suite enables users and customers to focus on developing their ML code and automation. ClearML is used by more than 1,300 enterprise customers to develop a highly repeatable process for their end-to-end AI model lifecycle, from product feature exploration to model deployment and monitoring in production. Use all of our modules for a complete ecosystem or plug in and play with the tools you have. ClearML is trusted by more than 150,000 forward-thinking Data Scientists, Data Engineers, ML Engineers, DevOps, Product Managers and business unit decision makers at leading Fortune 500 companies, enterprises, academia, and innovative start-ups worldwide within industries such as gaming, biotech , defense, healthcare, CPG, retail, financial services, among others.Starting Price: $15 -
36
Azure OpenAI Service
Microsoft
Apply advanced coding and language models to a variety of use cases. Leverage large-scale, generative AI models with deep understandings of language and code to enable new reasoning and comprehension capabilities for building cutting-edge applications. Apply these coding and language models to a variety of use cases, such as writing assistance, code generation, and reasoning over data. Detect and mitigate harmful use with built-in responsible AI and access enterprise-grade Azure security. Gain access to generative models that have been pretrained with trillions of words. Apply them to new scenarios including language, code, reasoning, inferencing, and comprehension. Customize generative models with labeled data for your specific scenario using a simple REST API. Fine-tune your model's hyperparameters to increase accuracy of outputs. Use the few-shot learning capability to provide the API with examples and achieve more relevant results.Starting Price: $0.0004 per 1000 tokens -
37
VectorShift
VectorShift
Build, design, prototype, and deploy custom generative AI workflows. Improve customer engagement and team/personal productivity. Build and embed into your website in minutes. Connect the chatbot with your knowledge base, and summarize and answer questions about documents, videos, audio files, and websites instantly. Create marketing copy, personalized outbound emails, call summaries, and graphics at scale. Save time by leveraging a library of pre-built pipelines such as chatbots and document search. Contribute to the marketplace by sharing your pipelines with other users. Our secure infrastructure and zero-day retention policy mean your data will not be stored by model providers. Our partnerships begin with a free diagnostic where we assess whether your organization is generative already and we create a roadmap for creating a turn-key solution using our platform to fit into your processes today. -
38
cnvrg.io
cnvrg.io
Scale your machine learning development from research to production with an end-to-end solution that gives your data science team all the tools they need in one place. As the leading data science platform for MLOps and model management, cnvrg.io is a pioneer in building cutting-edge machine learning development solutions so you can build high-impact machine learning models in half the time. Bridge science and engineering teams in a clear and collaborative machine learning management environment. Communicate and reproduce results with interactive workspaces, dashboards, dataset organization, experiment tracking and visualization, a model repository and more. Focus less on technical complexity and more on building high impact ML models. Cnvrg.io container-based infrastructure helps simplify engineering heavy tasks like tracking, monitoring, configuration, compute resource management, serving infrastructure, feature extraction, and model deployment. -
39
Hugging Face
Hugging Face
A new way to automatically train, evaluate and deploy state-of-the-art Machine Learning models. AutoTrain is an automatic way to train and deploy state-of-the-art Machine Learning models, seamlessly integrated with the Hugging Face ecosystem. Your training data stays on our server, and is private to your account. All data transfers are protected with encryption. Available today: text classification, text scoring, entity recognition, summarization, question answering, translation and tabular. CSV, TSV or JSON files, hosted anywhere. We delete your training data after training is done. Hugging Face also hosts an AI content detection tool.Starting Price: $9 per month -
40
Build your deep learning project quickly on Google Cloud: Quickly prototype with a portable and consistent environment for developing, testing, and deploying your AI applications with Deep Learning Containers. These Docker images use popular frameworks and are performance optimized, compatibility tested, and ready to deploy. Deep Learning Containers provide a consistent environment across Google Cloud services, making it easy to scale in the cloud or shift from on-premises. You have the flexibility to deploy on Google Kubernetes Engine (GKE), AI Platform, Cloud Run, Compute Engine, Kubernetes, and Docker Swarm.
-
41
Nebius
Nebius
Training-ready platform with NVIDIA® H100 Tensor Core GPUs. Competitive pricing. Dedicated support. Built for large-scale ML workloads: Get the most out of multihost training on thousands of H100 GPUs of full mesh connection with latest InfiniBand network up to 3.2Tb/s per host. Best value for money: Save at least 50% on your GPU compute compared to major public cloud providers*. Save even more with reserves and volumes of GPUs. Onboarding assistance: We guarantee a dedicated engineer support to ensure seamless platform adoption. Get your infrastructure optimized and k8s deployed. Fully managed Kubernetes: Simplify the deployment, scaling and management of ML frameworks on Kubernetes and use Managed Kubernetes for multi-node GPU training. Marketplace with ML frameworks: Explore our Marketplace with its ML-focused libraries, applications, frameworks and tools to streamline your model training. Easy to use. We provide all our new users with a 1-month trial period.Starting Price: $2.66/hour -
42
Provision a VM quickly with everything you need to get your deep learning project started on Google Cloud. Deep Learning VM Image makes it easy and fast to instantiate a VM image containing the most popular AI frameworks on a Google Compute Engine instance without worrying about software compatibility. You can launch Compute Engine instances pre-installed with TensorFlow, PyTorch, scikit-learn, and more. You can also easily add Cloud GPU and Cloud TPU support. Deep Learning VM Image supports the most popular and latest machine learning frameworks, like TensorFlow and PyTorch. To accelerate your model training and deployment, Deep Learning VM Images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers and the Intel® Math Kernel Library. Get started immediately with all the required frameworks, libraries, and drivers pre-installed and tested for compatibility. Deep Learning VM Image delivers a seamless notebook experience with integrated support for JupyterLab.
-
43
Coiled
Coiled
Coiled is enterprise-grade Dask made easy. Coiled manages Dask clusters in your AWS or GCP account, making it the easiest and most secure way to run Dask in production. Coiled manages cloud infrastructure for you, deploying on your AWS or Google Cloud account in minutes. Giving you a rock-solid deployment solution with zero effort. Customize cluster node types to fit your analysis needs. Run Dask in Jupyter Notebooks with real-time dashboards and cluster insights. Create software environments easily with customized dependencies for your Dask analysis. Enjoy enterprise-grade security. Reduce costs with SLAs, user-level management, and auto-termination of clusters. Coiled makes it easy to deploy your cluster on AWS or GCP. You can do it in minutes, without a credit card. Launch code from anywhere, including cloud services like AWS SageMaker, open source solutions, like JupyterHub, or even from the comfort of your very own laptop.Starting Price: $0.05 per CPU hour -
44
AWS IoT Core
Amazon
AWS IoT Core lets you connect IoT devices to the AWS cloud without the need to provision or manage servers. AWS IoT Core can support billions of devices and trillions of messages, and can process and route those messages to AWS endpoints and to other devices reliably and securely. With AWS IoT Core, your applications can keep track of and communicate with all your devices, all the time, even when they aren’t connected. AWS IoT Core also makes it easy to use AWS and Amazon services like AWS Lambda, Amazon Kinesis, Amazon S3, Amazon SageMaker, Amazon DynamoDB, Amazon CloudWatch, AWS CloudTrail, Amazon QuickSight, and Alexa Voice Service to build IoT applications that gather, process, analyze and act on data generated by connected devices, without having to manage any infrastructure. AWS IoT Core allows you to connect any number of devices to the cloud and to other devices without requiring you to provision or manage servers. -
45
AWS Inferentia
Amazon
AWS Inferentia accelerators are designed by AWS to deliver high performance at the lowest cost for your deep learning (DL) inference applications. The first-generation AWS Inferentia accelerator powers Amazon Elastic Compute Cloud (Amazon EC2) Inf1 instances, which deliver up to 2.3x higher throughput and up to 70% lower cost per inference than comparable GPU-based Amazon EC2 instances. Many customers, including Airbnb, Snap, Sprinklr, Money Forward, and Amazon Alexa, have adopted Inf1 instances and realized its performance and cost benefits. The first-generation Inferentia has 8 GB of DDR4 memory per accelerator and also features a large amount of on-chip memory. Inferentia2 offers 32 GB of HBM2e per accelerator, increasing the total memory by 4x and memory bandwidth by 10x over Inferentia. -
46
Amazon HealthLake
Amazon
Extract meaning from unstructured data with integrated Amazon Comprehend Medical for easy search and querying. Make predictions on health data using Amazon Athena queries, Amazon SageMaker ML models, and Amazon QuickSight analytics. Support interoperable standards such as the Fast Healthcare Interoperability Resources (FHIR). Run medical imaging applications in the cloud to increase scale and reduce costs. Amazon HealthLake is a HIPAA-eligible service offering healthcare and life sciences companies a chronological view of individual or patient population health data for query and analytics at scale. Analyze population health trends, predict outcomes, and manage costs with advanced analytics tools and ML models. Identify opportunities to close gaps in care and deliver targeted interventions with a longitudinal view of patient journeys. Apply advanced analytics and ML to newly structured data to optimize appointment scheduling and reduce unnecessary procedures. -
47
Oracle Data Science
Oracle
A data science platform that improves productivity with unparalleled abilities. Build and evaluate higher-quality machine learning (ML) models. Increase business flexibility by putting enterprise-trusted data to work quickly and support data-driven business objectives with easier deployment of ML models. Using cloud-based platforms to discover new business insights. Building a machine learning model is an iterative process. In this ebook, we break down the process and describe how machine learning models are built. Explore notebooks and build or test machine learning algorithms. Try AutoML and see data science results. Build high-quality models faster and easier. Automated machine learning capabilities rapidly examine the data and recommend the optimal data features and best algorithms. Additionally, automated machine learning tunes the model and explains the model’s results. -
48
AWS Deep Learning AMIs
Amazon
AWS Deep Learning AMIs (DLAMI) provides ML practitioners and researchers with a curated and secure set of frameworks, dependencies, and tools to accelerate deep learning in the cloud. Built for Amazon Linux and Ubuntu, Amazon Machine Images (AMIs) come preconfigured with TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, allowing you to quickly deploy and run these frameworks and tools at scale. Develop advanced ML models at scale to develop autonomous vehicle (AV) technology safely by validating models with millions of supported virtual tests. Accelerate the installation and configuration of AWS instances, and speed up experimentation and evaluation with up-to-date frameworks and libraries, including Hugging Face Transformers. Use advanced analytics, ML, and deep learning capabilities to identify trends and make predictions from raw, disparate health data. -
49
Azure AI Studio
Microsoft
Your platform for developing generative AI solutions and custom copilots. Build solutions faster, using pre-built and customizable AI models on your data—securely—to innovate at scale. Explore a robust and growing catalog of pre-built and customizable frontier and open-source models. Create AI models with a code-first experience and accessible UI validated by developers with disabilities. Seamlessly integrate all your data from OneLake in Microsoft Fabric. Integrate with GitHub Codespaces, Semantic Kernel, and LangChain. Access prebuilt capabilities to build apps quickly. Personalize content and interactions and reduce wait times. Lower the burden of risk and aid in new discoveries for organizations. Decrease the chance of human error using data and tools. Automate operations to refocus employees on more critical tasks. -
50
Klu
Klu
Klu.ai is a Generative AI platform that simplifies the process of designing, deploying, and optimizing AI applications. Klu integrates with your preferred Large Language Models, incorporating data from varied sources, giving your applications unique context. Klu accelerates building applications using language models like Anthropic Claude, Azure OpenAI, GPT-4, and over 15 other models, allowing rapid prompt/model experimentation, data gathering and user feedback, and model fine-tuning while cost-effectively optimizing performance. Ship prompt generations, chat experiences, workflows, and autonomous workers in minutes. Klu provides SDKs and an API-first approach for all capabilities to enable developer productivity. Klu automatically provides abstractions for common LLM/GenAI use cases, including: LLM connectors, vector storage and retrieval, prompt templates, observability, and evaluation/testing tooling.Starting Price: $97