Amazon SageMaker JumpStartAmazon
|
NVIDIA PhysicsNeMoNVIDIA
|
|||||
Related Products
|
||||||
About
Amazon SageMaker JumpStart is a machine learning (ML) hub that can help you accelerate your ML journey. With SageMaker JumpStart, you can access built-in algorithms with pretrained models from model hubs, pretrained foundation models to help you perform tasks such as article summarization and image generation, and prebuilt solutions to solve common use cases. In addition, you can share ML artifacts, including ML models and notebooks, within your organization to accelerate ML model building and deployment. SageMaker JumpStart provides hundreds of built-in algorithms with pretrained models from model hubs, including TensorFlow Hub, PyTorch Hub, HuggingFace, and MxNet GluonCV. You can also access built-in algorithms using the SageMaker Python SDK. Built-in algorithms cover common ML tasks, such as data classifications (image, text, tabular) and sentiment analysis.
|
About
NVIDIA PhysicsNeMo is an open source Python deep-learning framework for building, training, fine-tuning, and inferring physics-AI models that combine physics knowledge with data to accelerate simulations, create high-fidelity surrogate models, and enable near-real-time predictions across domains such as computational fluid dynamics, structural mechanics, electromagnetics, weather and climate, and digital twin applications. It provides scalable, GPU-accelerated tools and Python APIs built on PyTorch and released under the Apache 2.0 license, offering curated model architectures including physics-informed neural networks, neural operators, graph neural networks, and generative AI–based approaches so developers can harness physics-driven causality alongside observed data for engineering-grade modeling. PhysicsNeMo includes end-to-end training pipelines from geometry ingestion to differential equations, reference application recipes to jump-start workflows.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Companies looking for a Machine learning hub solution that has built-in algorithms, foundation models
|
Audience
Researchers, engineers, and developers who need an open source Python AI framework to build, train, fine-tune, and deploy physics-informed machine learning models for simulation, digital twins, and real-time prediction
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationAmazon
Founded: 2006
United States
aws.amazon.com/sagemaker/jumpstart/
|
Company InformationNVIDIA
Founded: 1993
United States
developer.nvidia.com/physicsnemo
|
|||||
Alternatives |
Alternatives |
|||||
|
|
|
|||||
|
|
|
|||||
|
|
|
|||||
|
|
|
|||||
Categories |
Categories |
|||||
Integrations
Amazon SageMaker
Amazon SageMaker Unified Studio
Amazon Web Services (AWS)
PyTorch
Python
|
Integrations
Amazon SageMaker
Amazon SageMaker Unified Studio
Amazon Web Services (AWS)
PyTorch
Python
|
|||||
|
|
|