Amazon SageMaker DebuggerAmazon
|
Amazon SageMaker EdgeAmazon
|
|||||
Related Products
|
||||||
About
Optimize ML models by capturing training metrics in real-time and sending alerts when anomalies are detected. Automatically stop training processes when the desired accuracy is achieved to reduce the time and cost of training ML models. Automatically profile and monitor system resource utilization and send alerts when resource bottlenecks are identified to continuously improve resource utilization. Amazon SageMaker Debugger can reduce troubleshooting during training from days to minutes by automatically detecting and alerting you to remediate common training errors such as gradient values becoming too large or too small. Alerts can be viewed in Amazon SageMaker Studio or configured through Amazon CloudWatch. Additionally, the SageMaker Debugger SDK enables you to automatically detect new classes of model-specific errors such as data sampling, hyperparameter values, and out-of-bound values.
|
About
The SageMaker Edge Agent allows you to capture data and metadata based on triggers that you set so that you can retrain your existing models with real-world data or build new models. Additionally, this data can be used to conduct your own analysis, such as model drift analysis. We offer three options for deployment. GGv2 (~ size 100MB) is a fully integrated AWS IoT deployment mechanism. For those customers with a limited device capacity, we have a smaller built-in deployment mechanism within SageMaker Edge. For customers who have a preferred deployment mechanism, we support third party mechanisms that can be plugged into our user flow. Amazon SageMaker Edge Manager provides a dashboard so you can understand the performance of models running on each device across your fleet. The dashboard helps you visually understand overall fleet health and identify the problematic models through a dashboard in the console.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Businesses seeking a tool to optimize ML models with real-time monitoring of training metrics and system resources
|
Audience
Companies looking for an advance Machine Learning solution to easily operate machine learning models running on edge devices
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationAmazon
Founded: 1994
United States
aws.amazon.com/sagemaker/debugger/
|
Company InformationAmazon
Founded: 2006
United States
aws.amazon.com/sagemaker/edge/
|
|||||
Alternatives |
Alternatives |
|||||
|
|
|||||
|
|
|||||
|
|
|||||
|
||||||
Categories |
Categories |
|||||
Integrations
Amazon SageMaker
Amazon SageMaker Unified Studio
Amazon Web Services (AWS)
AWS Lambda
Amazon CloudWatch
Amazon SageMaker Studio
Change Healthcare Data & Analytics
Keras
MXNet
PyTorch
|
Integrations
Amazon SageMaker
Amazon SageMaker Unified Studio
Amazon Web Services (AWS)
AWS Lambda
Amazon CloudWatch
Amazon SageMaker Studio
Change Healthcare Data & Analytics
Keras
MXNet
PyTorch
|
|||||
|
|