Alternatives to Amazon SageMaker Debugger
Compare Amazon SageMaker Debugger alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Amazon SageMaker Debugger in 2024. Compare features, ratings, user reviews, pricing, and more from Amazon SageMaker Debugger competitors and alternatives in order to make an informed decision for your business.
-
1
TrustInSoft Analyzer
TrustInSoft
TrustInSoft Analyzer is a C and C++ source code analyzer powered by formal methods, mathematical & logical reasonings that allow for exhaustive analysis of source code. This analysis can be run without false positives or false negatives, so that every real bug in the code is found. Developers receive several benefits: a user-friendly graphical interface that directs developers to the root cause of bugs, and instant utility to expand the coverage of their existing tests. Unlike traditional source code analysis tools, TrustInSoft’s solution is not only the most comprehensive approach on the market but is also progressive, instantly deployable by developers, even if they lack experience with formal methods, from exhaustive analysis up to a functional proof that the software developed meets specifications. Companies who use TrustInSoft Analyzer reduce their verification costs by 4, efforts in bug detection by 40, and obtain an irrefutable proof that their software is safe and secure. -
2
Amazon SageMaker
Amazon
Amazon SageMaker is a fully managed service that provides every developer and data scientist with the ability to build, train, and deploy machine learning (ML) models quickly. SageMaker removes the heavy lifting from each step of the machine learning process to make it easier to develop high quality models. Traditional ML development is a complex, expensive, iterative process made even harder because there are no integrated tools for the entire machine learning workflow. You need to stitch together tools and workflows, which is time-consuming and error-prone. SageMaker solves this challenge by providing all of the components used for machine learning in a single toolset so models get to production faster with much less effort and at lower cost. Amazon SageMaker Studio provides a single, web-based visual interface where you can perform all ML development steps. SageMaker Studio gives you complete access, control, and visibility into each step required. -
3
BentoML
BentoML
Serve your ML model in any cloud in minutes. Unified model packaging format enabling both online and offline serving on any platform. 100x the throughput of your regular flask-based model server, thanks to our advanced micro-batching mechanism. Deliver high-quality prediction services that speak the DevOps language and integrate perfectly with common infrastructure tools. Unified format for deployment. High-performance model serving. DevOps best practices baked in. The service uses the BERT model trained with the TensorFlow framework to predict movie reviews' sentiment. DevOps-free BentoML workflow, from prediction service registry, deployment automation, to endpoint monitoring, all configured automatically for your team. A solid foundation for running serious ML workloads in production. Keep all your team's models, deployments, and changes highly visible and control access via SSO, RBAC, client authentication, and auditing logs.Starting Price: Free -
4
Amazon SageMaker Model Training reduces the time and cost to train and tune machine learning (ML) models at scale without the need to manage infrastructure. You can take advantage of the highest-performing ML compute infrastructure currently available, and SageMaker can automatically scale infrastructure up or down, from one to thousands of GPUs. Since you pay only for what you use, you can manage your training costs more effectively. To train deep learning models faster, SageMaker distributed training libraries can automatically split large models and training datasets across AWS GPU instances, or you can use third-party libraries, such as DeepSpeed, Horovod, or Megatron. Efficiently manage system resources with a wide choice of GPUs and CPUs including P4d.24xl instances, which are the fastest training instances currently available in the cloud. Specify the location of data, indicate the type of SageMaker instances, and get started with a single click.
-
5
Amazon SageMaker Clarify
Amazon
Amazon SageMaker Clarify provides machine learning (ML) developers with purpose-built tools to gain greater insights into their ML training data and models. SageMaker Clarify detects and measures potential bias using a variety of metrics so that ML developers can address potential bias and explain model predictions. SageMaker Clarify can detect potential bias during data preparation, after model training, and in your deployed model. For instance, you can check for bias related to age in your dataset or in your trained model and receive a detailed report that quantifies different types of potential bias. SageMaker Clarify also includes feature importance scores that help you explain how your model makes predictions and produces explainability reports in bulk or real time through online explainability. You can use these reports to support customer or internal presentations or to identify potential issues with your model. -
6
Amazon SageMaker Autopilot
Amazon
Amazon SageMaker Autopilot eliminates the heavy lifting of building ML models. You simply provide a tabular dataset and select the target column to predict, and SageMaker Autopilot will automatically explore different solutions to find the best model. You then can directly deploy the model to production with just one click or iterate on the recommended solutions to further improve the model quality. You can use Amazon SageMaker Autopilot even when you have missing data. SageMaker Autopilot automatically fills in the missing data, provides statistical insights about columns in your dataset, and automatically extracts information from non-numeric columns, such as date and time information from timestamps. -
7
Amazon SageMaker Ground Truth
Amazon Web Services
Amazon SageMaker allows you to identify raw data such as images, text files, and videos; add informative labels and generate labeled synthetic data to create high-quality training data sets for your machine learning (ML) models. SageMaker offers two options, Amazon SageMaker Ground Truth Plus and Amazon SageMaker Ground Truth, which give you the flexibility to use an expert workforce to create and manage data labeling workflows on your behalf or manage your own data labeling workflows. data labeling. If you want the flexibility to create and manage your own personal and data labeling workflows, you can use SageMaker Ground Truth. SageMaker Ground Truth is a data labeling service that makes data labeling easy and gives you the option of using human annotators via Amazon Mechanical Turk, third-party providers, or your own private staff.Starting Price: $0.08 per month -
8
Amazon SageMaker provides all the tools and libraries you need to build ML models, the process of iteratively trying different algorithms and evaluating their accuracy to find the best one for your use case. In Amazon SageMaker you can pick different algorithms, including over 15 that are built-in and optimized for SageMaker, and use over 150 pre-built models from popular model zoos available with a few clicks. SageMaker also offers a variety of model-building tools including Amazon SageMaker Studio Notebooks and RStudio where you can run ML models on a small scale to see results and view reports on their performance so you can come up with high-quality working prototypes. Amazon SageMaker Studio Notebooks help you build ML models faster and collaborate with your team. Amazon SageMaker Studio notebooks provide one-click Jupyter notebooks that you can start working within seconds. Amazon SageMaker also enables one-click sharing of notebooks.
-
9
Amazon SageMaker makes it easy to deploy ML models to make predictions (also known as inference) at the best price-performance for any use case. It provides a broad selection of ML infrastructure and model deployment options to help meet all your ML inference needs. It is a fully managed service and integrates with MLOps tools, so you can scale your model deployment, reduce inference costs, manage models more effectively in production, and reduce operational burden. From low latency (a few milliseconds) and high throughput (hundreds of thousands of requests per second) to long-running inference for use cases such as natural language processing and computer vision, you can use Amazon SageMaker for all your inference needs.
-
10
Amazon SageMaker Studio Lab
Amazon
Amazon SageMaker Studio Lab is a free machine learning (ML) development environment that provides the compute, storage (up to 15GB), and security, all at no cost, for anyone to learn and experiment with ML. All you need to get started is a valid email address, you don’t need to configure infrastructure or manage identity and access or even sign up for an AWS account. SageMaker Studio Lab accelerates model building through GitHub integration, and it comes preconfigured with the most popular ML tools, frameworks, and libraries to get you started immediately. SageMaker Studio Lab automatically saves your work so you don’t need to restart in between sessions. It’s as easy as closing your laptop and coming back later. Free machine learning development environment that provides the computing, storage, and security to learn and experiment with ML. GitHub integration and preconfigured with the most popular ML tools, frameworks, and libraries so you can get started immediately. -
11
Amazon SageMaker JumpStart
Amazon
Amazon SageMaker JumpStart is a machine learning (ML) hub that can help you accelerate your ML journey. With SageMaker JumpStart, you can access built-in algorithms with pretrained models from model hubs, pretrained foundation models to help you perform tasks such as article summarization and image generation, and prebuilt solutions to solve common use cases. In addition, you can share ML artifacts, including ML models and notebooks, within your organization to accelerate ML model building and deployment. SageMaker JumpStart provides hundreds of built-in algorithms with pretrained models from model hubs, including TensorFlow Hub, PyTorch Hub, HuggingFace, and MxNet GluonCV. You can also access built-in algorithms using the SageMaker Python SDK. Built-in algorithms cover common ML tasks, such as data classifications (image, text, tabular) and sentiment analysis. -
12
AWS Deep Learning Containers
Amazon
Deep Learning Containers are Docker images that are preinstalled and tested with the latest versions of popular deep learning frameworks. Deep Learning Containers lets you deploy custom ML environments quickly without building and optimizing your environments from scratch. Deploy deep learning environments in minutes using prepackaged and fully tested Docker images. Build custom ML workflows for training, validation, and deployment through integration with Amazon SageMaker, Amazon EKS, and Amazon ECS. -
13
Amazon SageMaker Edge
Amazon
The SageMaker Edge Agent allows you to capture data and metadata based on triggers that you set so that you can retrain your existing models with real-world data or build new models. Additionally, this data can be used to conduct your own analysis, such as model drift analysis. We offer three options for deployment. GGv2 (~ size 100MB) is a fully integrated AWS IoT deployment mechanism. For those customers with a limited device capacity, we have a smaller built-in deployment mechanism within SageMaker Edge. For customers who have a preferred deployment mechanism, we support third party mechanisms that can be plugged into our user flow. Amazon SageMaker Edge Manager provides a dashboard so you can understand the performance of models running on each device across your fleet. The dashboard helps you visually understand overall fleet health and identify the problematic models through a dashboard in the console. -
14
Amazon SageMaker Data Wrangler reduces the time it takes to aggregate and prepare data for machine learning (ML) from weeks to minutes. With SageMaker Data Wrangler, you can simplify the process of data preparation and feature engineering, and complete each step of the data preparation workflow (including data selection, cleansing, exploration, visualization, and processing at scale) from a single visual interface. You can use SQL to select the data you want from a wide variety of data sources and import it quickly. Next, you can use the Data Quality and Insights report to automatically verify data quality and detect anomalies, such as duplicate rows and target leakage. SageMaker Data Wrangler contains over 300 built-in data transformations so you can quickly transform data without writing any code. Once you have completed your data preparation workflow, you can scale it to your full datasets using SageMaker data processing jobs; train, tune, and deploy models.
-
15
Run:AI
Run:AI
Virtualization Software for AI Infrastructure. Gain visibility and control over AI workloads to increase GPU utilization. Run:AI has built the world’s first virtualization layer for deep learning training models. By abstracting workloads from underlying infrastructure, Run:AI creates a shared pool of resources that can be dynamically provisioned, enabling full utilization of expensive GPU resources. Gain control over the allocation of expensive GPU resources. Run:AI’s scheduling mechanism enables IT to control, prioritize and align data science computing needs with business goals. Using Run:AI’s advanced monitoring tools, queueing mechanisms, and automatic preemption of jobs based on priorities, IT gains full control over GPU utilization. By creating a flexible ‘virtual pool’ of compute resources, IT leaders can visualize their full infrastructure capacity and utilization across sites, whether on premises or in the cloud. -
16
VESSL AI
VESSL AI
Build, train, and deploy models faster at scale with fully managed infrastructure, tools, and workflows. Deploy custom AI & LLMs on any infrastructure in seconds and scale inference with ease. Handle your most demanding tasks with batch job scheduling, only paying with per-second billing. Optimize costs with GPU usage, spot instances, and built-in automatic failover. Train with a single command with YAML, simplifying complex infrastructure setups. Automatically scale up workers during high traffic and scale down to zero during inactivity. Deploy cutting-edge models with persistent endpoints in a serverless environment, optimizing resource usage. Monitor system and inference metrics in real-time, including worker count, GPU utilization, latency, and throughput. Efficiently conduct A/B testing by splitting traffic among multiple models for evaluation.Starting Price: $100 + compute/month -
17
Ori GPU Cloud
Ori
Launch GPU-accelerated instances highly configurable to your AI workload & budget. Reserve thousands of GPUs in a next-gen AI data center for training and inference at scale. The AI world is shifting to GPU clouds for building and launching groundbreaking models without the pain of managing infrastructure and scarcity of resources. AI-centric cloud providers outpace traditional hyperscalers on availability, compute costs and scaling GPU utilization to fit complex AI workloads. Ori houses a large pool of various GPU types tailored for different processing needs. This ensures a higher concentration of more powerful GPUs readily available for allocation compared to general-purpose clouds. Ori is able to offer more competitive pricing year-on-year, across on-demand instances or dedicated servers. When compared to per-hour or per-usage pricing of legacy clouds, our GPU compute costs are unequivocally cheaper to run large-scale AI workloads.Starting Price: $3.24 per month -
18
Hugging Face
Hugging Face
A new way to automatically train, evaluate and deploy state-of-the-art Machine Learning models. AutoTrain is an automatic way to train and deploy state-of-the-art Machine Learning models, seamlessly integrated with the Hugging Face ecosystem. Your training data stays on our server, and is private to your account. All data transfers are protected with encryption. Available today: text classification, text scoring, entity recognition, summarization, question answering, translation and tabular. CSV, TSV or JSON files, hosted anywhere. We delete your training data after training is done. Hugging Face also hosts an AI content detection tool.Starting Price: $9 per month -
19
Memfault
Memfault
Reduce risk, ship products faster, and resolve issues proactively by upgrading your Android and MCU-based devices with Memfault. By integrating Memfault into smart device infrastructure, developers and IoT device manufacturers can monitor and manage the entire device lifecycle, from development to feature updates, with ease and speed. Monitor hardware and firmware performance, remotely investigate issues, and incrementally rollout targeted updates to devices without disrupting customers. Go beyond application monitoring with device and fleet-level metrics, like battery health and connectivity with crash analytics for firmware. Resolve issues more efficiently with automatic detection, alerts, deduplication, and actionable insights sent via the cloud. Keep customers happy by fixing bugs quickly and shipping features more frequently with staged rollouts and specific device groups (cohorts). -
20
Brev.dev
Brev.dev
Find, provision, and configure AI-ready cloud instances for dev, training, and deployment. Automatically install CUDA and Python, load the model, and SSH in. Use Brev.dev to find a GPU and get it configured to fine-tune or train your model. A single interface between AWS, GCP, and Lambda GPU cloud. Use credits when you have them. Pick an instance based on costs & availability. A CLI to automatically update your SSH config ensuring it's done securely. Build faster with a better dev environment. Brev connects to cloud providers to find you a GPU at the best price, configures it, and wraps SSH to connect your code editor to the remote machine. Change your instance, add or remove a GPU, add GB to your hard drive, etc. Set up your environment to make sure your code always runs, and make it easy to share or clone. You can create your own instance from scratch or use a template. The console should give you a couple of template options.Starting Price: $0.04 per hour -
21
Arm DDT
Arm
Arm DDT is the number one server and HPC debugger in research, industry, and academia for software engineers and scientists developing C++, C, Fortran parallel and threaded applications on CPUs, GPUs, Intel, and Arm. Arm DDT is trusted as a powerful tool for the automatic detection of memory bugs and divergent behavior to achieve lightning-fast performance at all scales. Cross-platform for multiple servers and HPC architectures. Native parallel debugging of Python applications. Has market-leading memory debugging. Outstanding C++ debugging support. Complete Fortran debugging support. Has an offline mode for debugging non-interactively. Handles and visualizes huge data sets. Arm DDT is a powerful parallel debugger, available standalone or as part of the Arm Forge debug and profile suite. Its intuitive graphical interface provides automatic detection of memory bugs and divergent behavior at all scales. -
22
Errsole Cloud
errsole
Node.js Monitoring Tool: Automatically captures logs, errors, and slow requests. Debug your live app directly from your web browser. - Centralized Logging: Errsole centralizes all application logs from servers in one place. - Error Tracking: Errsole centralizes all application errors in one place for viewing and resolution. - Root Cause Analysis: With Errsole, developers can pinpoint the exact HTTP requests that caused errors. - Slow Request Logging: Errsole tracks and records slow HTTP requests in the application, enabling users to pinpoint and address performance bottlenecks. - Debugging: With Errsole Debugger, developers can debug live applications directly from their web browser. - Collaboration: Invite developers to the app, manage their permissions, and assign errors to individual developers.Starting Price: 0 -
23
Amazon SageMaker Pipelines
Amazon
Using Amazon SageMaker Pipelines, you can create ML workflows with an easy-to-use Python SDK, and then visualize and manage your workflow using Amazon SageMaker Studio. You can be more efficient and scale faster by storing and reusing the workflow steps you create in SageMaker Pipelines. You can also get started quickly with built-in templates to build, test, register, and deploy models so you can get started with CI/CD in your ML environment quickly. Many customers have hundreds of workflows, each with a different version of the same model. With the SageMaker Pipelines model registry, you can track these versions in a central repository where it is easy to choose the right model for deployment based on your business requirements. You can use SageMaker Studio to browse and discover models, or you can access them through the SageMaker Python SDK. -
24
AWS Trainium
Amazon Web Services
AWS Trainium is the second-generation Machine Learning (ML) accelerator that AWS purpose built for deep learning training of 100B+ parameter models. Each Amazon Elastic Compute Cloud (EC2) Trn1 instance deploys up to 16 AWS Trainium accelerators to deliver a high-performance, low-cost solution for deep learning (DL) training in the cloud. Although the use of deep learning is accelerating, many development teams are limited by fixed budgets, which puts a cap on the scope and frequency of training needed to improve their models and applications. Trainium-based EC2 Trn1 instances solve this challenge by delivering faster time to train while offering up to 50% cost-to-train savings over comparable Amazon EC2 instances. -
25
AWS Neuron
Amazon Web Services
It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP). -
26
Azure OpenAI Service
Microsoft
Apply advanced coding and language models to a variety of use cases. Leverage large-scale, generative AI models with deep understandings of language and code to enable new reasoning and comprehension capabilities for building cutting-edge applications. Apply these coding and language models to a variety of use cases, such as writing assistance, code generation, and reasoning over data. Detect and mitigate harmful use with built-in responsible AI and access enterprise-grade Azure security. Gain access to generative models that have been pretrained with trillions of words. Apply them to new scenarios including language, code, reasoning, inferencing, and comprehension. Customize generative models with labeled data for your specific scenario using a simple REST API. Fine-tune your model's hyperparameters to increase accuracy of outputs. Use the few-shot learning capability to provide the API with examples and achieve more relevant results.Starting Price: $0.0004 per 1000 tokens -
27
BotKube
BotKube
BotKube is a messaging bot for monitoring and debugging Kubernetes clusters. It's built and maintained by InfraCloud. BotKube can be integrated with multiple messaging platforms like Slack, Mattermost, Microsoft Teams to help you monitor your Kubernetes cluster(s), debug critical deployments and gives recommendations for standard practices by running checks on the Kubernetes resources. BotKube watches Kubernetes resources and sends a notification to the channel if any event occurs for example ImagePullBackOff error. You can customize the objects and level of events you want to get from the Kubernetes cluster. You can turn on/off notifications. BotKube can execute kubectl commands on the Kubernetes cluster without giving access to Kubeconfig or underlying infrastructure. With BotKube you can debug your deployment, services or anything about your cluster right from your messaging window. -
28
Xdebug
Xdebug
Xdebug is an extension for PHP, and provides a range of features to improve the PHP development experience. A way to step through your code in your IDE or editor while the script is executing. An improved var_dump() function, stack traces for notices, warnings, errors, and exceptions to highlight the code path to the error. Writes every function call, with arguments and invocation location to disk. Optionally also includes every variable assignment and return value for each function. Allows you, with the help of visualization tools, to analyze the performance of your PHP application and find bottlenecks. Shows which parts of your code base are executed when running unit tests with PHPUnit. Installing Xdebug with a package manager is often the fastest way. You can substitute the PHP version with the one that matches the PHP version that you are running. You can install Xdebug through PECL on Linux & macOS with Homebrew.Starting Price: Free -
29
Amazon SageMaker Canvas
Amazon
Amazon SageMaker Canvas expands access to machine learning (ML) by providing business analysts with a visual interface that allows them to generate accurate ML predictions on their own, without requiring any ML experience or having to write a single line of code. Visual point-and-click interface to connect, prepare, analyze, and explore data for building ML models and generating accurate predictions. Automatically build ML models to run what-if analysis and generate single or bulk predictions with a few clicks. Boost collaboration between business analysts and data scientists by sharing, reviewing, and updating ML models across tools. Import ML models from anywhere and generate predictions directly in Amazon SageMaker Canvas. With Amazon SageMaker Canvas, you can import data from disparate sources, select values you want to predict, automatically prepare and explore data, and quickly and more easily build ML models. You can then analyze models and generate accurate predictions. -
30
Honeycomb
Honeycomb.io
Log management. Upgraded. With Honeycomb. Honeycomb is built for modern dev teams to better understand application performance, debug & improve log management. With rapid query, find unknown unknowns across system logs, metrics & traces with interactive charts for the deepest view against raw, high cardinality data. Configure Service Level Objective (SLOs) on what users care about so you cut-down noisy alerts and prioritize the work. Reduce on-call toil, ship code faster and keep customers happy. Pinpoint the cause. Optimize your code. See your prod in hi-res. Our SLOs tell you when your customers are having a bad experience so that you can immediately debug why those issues are happening, all within the same interface. Use our Query Builder to easily slice and dice your data to visualize behavioral patterns for individual users and services (grouped by any dimensions).Starting Price: $70 per month -
31
HttpWatch
Neumetrix
Become a debugging and web performance guru with the ultimate in-browser HTTP sniffer. Debug the network traffic generated by a web page directly in the browser without having to switch to a separate tool. Accurately measure the network performance of a web page and view opportunities for boosting its speed. No extra configuration or proxies are required - even with encrypted HTTPS traffic! Quickly find weak SSL configurations and other security-related issues on your web server. Anyone can use the free Basic Edition to send you full log files to help you remotely diagnose errors or performance issues. Use the HttpWatch API to collect performance data from your automated website tests. HttpWatch integrates with Chrome, Edge and Internet Explorer browsers to show you the HTTP and HTTPS traffic that is generated when you access a web page. Select a request in HttpWatch and everything you need to know is display in a tabbed window.Starting Price: $395 one-time payment -
32
Shake
Shake
Reports arrive to you instantly, automatically supplemented with a ton of useful data so you can fix them 50X faster. Whenever users notice a bug, they just shake their phone to report it, without ever leaving your app. When they shake their device, Shake opens up and allows them to send you feedback without ever leaving your app. Report yourself any info from the user’s device you want. Use .setMetadata() to easily adjust the data to your debugging requirements. See the user’s taps around your app, .log() custom events and see all their network traffic prior to reporting the bug to you. On the web Dashboard you can, for example, effortlessly find only bugs reported from iPad Airs that were in landscape mode and offline. Get bug notifications immediately in your team chat. Or, have tasks created directly in your issue tracker of choice. Shake was built to play nicely with the tools your team already uses.Starting Price: $50 per month -
33
Options for every business to train deep learning and machine learning models cost-effectively. AI accelerators for every use case, from low-cost inference to high-performance training. Simple to get started with a range of services for development and deployment. Tensor Processing Units (TPUs) are custom-built ASIC to train and execute deep neural networks. Train and run more powerful and accurate models cost-effectively with faster speed and scale. A range of NVIDIA GPUs to help with cost-effective inference or scale-up or scale-out training. Leverage RAPID and Spark with GPUs to execute deep learning. Run GPU workloads on Google Cloud where you have access to industry-leading storage, networking, and data analytics technologies. Access CPU platforms when you start a VM instance on Compute Engine. Compute Engine offers a range of both Intel and AMD processors for your VMs.
-
34
Motific.ai
Outshift by Cisco
Accelerate your GenAI adoption journey. Configure GenAI assistants powered by your organization’s data with just a few clicks. Roll out GenAI assistants with guardrails for security, trust, compliance, and cost management. Discover how your teams are leveraging AI assistants with data-driven insights. Uncover opportunities to maximize value. Power your GenAI apps with top Large Language Models (LLMs). Seamlessly connect with top GenAI model providers such as Google, Amazon, Mistral, and Azure. Employ safe GenAI on your marcom site that answers press, analysts, and customer questions. Quickly create and deploy GenAI assistants on web portals that offer swift, precise, and policy-controlled responses to questions, using the information in your public content. Leverage safe GenAI to offer swift, correct answers to legal policy questions from your employees. -
35
Nebius
Nebius
Training-ready platform with NVIDIA® H100 Tensor Core GPUs. Competitive pricing. Dedicated support. Built for large-scale ML workloads: Get the most out of multihost training on thousands of H100 GPUs of full mesh connection with latest InfiniBand network up to 3.2Tb/s per host. Best value for money: Save at least 50% on your GPU compute compared to major public cloud providers*. Save even more with reserves and volumes of GPUs. Onboarding assistance: We guarantee a dedicated engineer support to ensure seamless platform adoption. Get your infrastructure optimized and k8s deployed. Fully managed Kubernetes: Simplify the deployment, scaling and management of ML frameworks on Kubernetes and use Managed Kubernetes for multi-node GPU training. Marketplace with ML frameworks: Explore our Marketplace with its ML-focused libraries, applications, frameworks and tools to streamline your model training. Easy to use. We provide all our new users with a 1-month trial period.Starting Price: $2.66/hour -
36
NVIDIA Triton™ inference server delivers fast and scalable AI in production. Open-source inference serving software, Triton inference server streamlines AI inference by enabling teams deploy trained AI models from any framework (TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, custom and more on any GPU- or CPU-based infrastructure (cloud, data center, or edge). Triton runs models concurrently on GPUs to maximize throughput and utilization, supports x86 and ARM CPU-based inferencing, and offers features like dynamic batching, model analyzer, model ensemble, and audio streaming. Triton helps developers deliver high-performance inference aTriton integrates with Kubernetes for orchestration and scaling, exports Prometheus metrics for monitoring, supports live model updates, and can be used in all major public cloud machine learning (ML) and managed Kubernetes platforms. Triton helps standardize model deployment in production.Starting Price: Free
-
37
Lemma
Thread AI
Prototype and production event-driven, distributed workflows that span AI models, APIs, databases, ETL systems, and applications, all in one platform. Enable a faster time to value for your organization while cutting down operational overhead and infrastructure complexity. Focus on investing in proprietary logic and accelerating feature delivery without wasting time on platform and architecture decisions that slow development and execution. Revolutionize emergency response with real-time transcription, keyword and keyphrase identification, and integrated connectivity to external systems. Connect the physical and digital worlds and optimize maintenance operations by monitoring sensors, generating a triage plan for operator review upon an alert, and creating service tickets in your work order platform. Apply past experience in new ways to current problems by generating responses to incoming security assessments based on company-specific data across various platforms. -
38
GMI Cloud
GMI Cloud
Build your generative AI applications in minutes on GMI GPU Cloud. GMI Cloud is more than bare metal. Train, fine-tune, and infer state-of-the-art models. Our clusters are ready to go with scalable GPU containers and preconfigured popular ML frameworks. Get instant access to the latest GPUs for your AI workloads. Whether you need flexible on-demand GPUs or dedicated private cloud instances, we've got you covered. Maximize GPU resources with our turnkey Kubernetes software. Easily allocate, deploy, and monitor GPUs or nodes with our advanced orchestration tools. Customize and serve models to build AI applications using your data. GMI Cloud lets you deploy any GPU workload quickly and easily, so you can focus on running ML models, not managing infrastructure. Launch pre-configured environments and save time on building container images, installing software, downloading models, and configuring environment variables. Or use your own Docker image to fit your needs.Starting Price: $2.50 per hour -
39
NVIDIA GPU-Optimized AMI
Amazon
The NVIDIA GPU-Optimized AMI is a virtual machine image for accelerating your GPU accelerated Machine Learning, Deep Learning, Data Science and HPC workloads. Using this AMI, you can spin up a GPU-accelerated EC2 VM instance in minutes with a pre-installed Ubuntu OS, GPU driver, Docker and NVIDIA container toolkit. This AMI provides easy access to NVIDIA's NGC Catalog, a hub for GPU-optimized software, for pulling & running performance-tuned, tested, and NVIDIA certified docker containers. The NGC catalog provides free access to containerized AI, Data Science, and HPC applications, pre-trained models, AI SDKs and other resources to enable data scientists, developers, and researchers to focus on building and deploying solutions. This GPU-optimized AMI is free with an option to purchase enterprise support offered through NVIDIA AI Enterprise. For how to get support for this AMI, scroll down to 'Support Information'Starting Price: $3.06 per hour -
40
FluidStack
FluidStack
Unlock 3-5x better prices than traditional clouds. FluidStack aggregates under-utilized GPUs from data centers around the world to deliver the industry’s best economics. Deploy 50,000+ high-performance servers in seconds via a single platform and API. Access large-scale A100 and H100 clusters with InfiniBand in days. Train, fine-tune, and deploy LLMs on thousands of affordable GPUs in minutes with FluidStack. FluidStack unites individual data centers to overcome monopolistic GPU cloud pricing. Compute 5x faster while making the cloud efficient. Instantly access 47,000+ unused servers with tier 4 uptime and security from one simple interface. Train larger models, deploy Kubernetes clusters, render quicker, and stream with no latency. Setup in one click with custom images and APIs to deploy in seconds. 24/7 direct support via Slack, emails, or calls, our engineers are an extension of your team.Starting Price: $1.49 per month -
41
Lambda GPU Cloud
Lambda
Train the most demanding AI, ML, and Deep Learning models. Scale from a single machine to an entire fleet of VMs with a few clicks. Start or scale up your Deep Learning project with Lambda Cloud. Get started quickly, save on compute costs, and easily scale to hundreds of GPUs. Every VM comes preinstalled with the latest version of Lambda Stack, which includes major deep learning frameworks and CUDA® drivers. In seconds, access a dedicated Jupyter Notebook development environment for each machine directly from the cloud dashboard. For direct access, connect via the Web Terminal in the dashboard or use SSH directly with one of your provided SSH keys. By building compute infrastructure at scale for the unique requirements of deep learning researchers, Lambda can pass on significant savings. Benefit from the flexibility of using cloud computing without paying a fortune in on-demand pricing when workloads rapidly increase.Starting Price: $1.25 per hour -
42
Oblivus
Oblivus
Our infrastructure is equipped to meet your computing requirements, be it one or thousands of GPUs, or one vCPU to tens of thousands of vCPUs, we've got you covered. Our resources are readily available to cater to your needs, whenever you need them. Switching between GPU and CPU instances is a breeze with our platform. You have the flexibility to deploy, modify, and rescale your instances according to your needs, without any hassle. Outstanding machine learning performance without breaking the bank. The latest technology at a significantly lower cost. Cutting-edge GPUs are designed to meet the demands of your workloads. Gain access to computational resources that are tailored to suit the intricacies of your models. Leverage our infrastructure to perform large-scale inference and access necessary libraries with our OblivusAI OS. Unleash the full potential of your gaming experience by utilizing our robust infrastructure to play games in the settings of your choice.Starting Price: $0.29 per hour -
43
Azure AI Studio
Microsoft
Your platform for developing generative AI solutions and custom copilots. Build solutions faster, using pre-built and customizable AI models on your data—securely—to innovate at scale. Explore a robust and growing catalog of pre-built and customizable frontier and open-source models. Create AI models with a code-first experience and accessible UI validated by developers with disabilities. Seamlessly integrate all your data from OneLake in Microsoft Fabric. Integrate with GitHub Codespaces, Semantic Kernel, and LangChain. Access prebuilt capabilities to build apps quickly. Personalize content and interactions and reduce wait times. Lower the burden of risk and aid in new discoveries for organizations. Decrease the chance of human error using data and tools. Automate operations to refocus employees on more critical tasks. -
44
fal.ai
fal.ai
fal is a serverless Python runtime that lets you scale your code in the cloud with no infra management. Build real-time AI applications with lightning-fast inference (under ~120ms). Check out some of the ready-to-use models, they have simple API endpoints ready for you to start your own AI-powered applications. Ship custom model endpoints with fine-grained control over idle timeout, max concurrency, and autoscaling. Use common models such as Stable Diffusion, Background Removal, ControlNet, and more as APIs. These models are kept warm for free. (Don't pay for cold starts) Join the discussion around our product and help shape the future of AI. Automatically scale up to hundreds of GPUs and scale down back to 0 GPUs when idle. Pay by the second only when your code is running. You can start using fal on any Python project by just importing fal and wrapping existing functions with the decorator.Starting Price: $0.00111 per second -
45
With Amazon SageMaker Model Monitor, you can select the data you would like to monitor and analyze without the need to write any code. SageMaker Model Monitor lets you select data from a menu of options such as prediction output, and captures metadata such as timestamp, model name, and endpoint so you can analyze model predictions based on the metadata. You can specify the sampling rate of data capture as a percentage of overall traffic in the case of high volume real-time predictions, and the data is stored in your own Amazon S3 bucket. You can also encrypt this data, configure fine-grained security, define data retention policies, and implement access control mechanisms for secure access. Amazon SageMaker Model Monitor offers built-in analysis in the form of statistical rules, to detect drifts in data and model quality. You can also write custom rules and specify thresholds for each rule.
-
46
Amazon SageMaker Studio
Amazon
Amazon SageMaker Studio is an integrated development environment (IDE) that provides a single web-based visual interface where you can access purpose-built tools to perform all machine learning (ML) development steps, from preparing data to building, training, and deploying your ML models, improving data science team productivity by up to 10x. You can quickly upload data, create new notebooks, train and tune models, move back and forth between steps to adjust experiments, collaborate seamlessly within your organization, and deploy models to production without leaving SageMaker Studio. Perform all ML development steps, from preparing raw data to deploying and monitoring ML models, with access to the most comprehensive set of tools in a single web-based visual interface. Quickly move between steps of the ML lifecycle to fine-tune your models. Replay training experiments, tune model features and other inputs, and compare results, without leaving SageMaker Studio. -
47
Arm Forge
Arm
Build reliable and optimized code for the right results on multiple Server and HPC architectures, from the latest compilers and C++ standards to Intel, 64-bit Arm, AMD, OpenPOWER, and Nvidia GPU hardware. Arm Forge combines Arm DDT, the leading debugger for time-saving high-performance application debugging, Arm MAP, the trusted performance profiler for invaluable optimization advice across native and Python HPC codes, and Arm Performance Reports for advanced reporting capabilities. Arm DDT and Arm MAP are also available as standalone products. Efficient application development for Linux Server and HPC with Full technical support from Arm experts. Arm DDT is the debugger of choice for developing of C++, C, or Fortran parallel, and threaded applications on CPUs, and GPUs. Its powerful intuitive graphical interface helps you easily detect memory bugs and divergent behavior at all scales, making Arm DDT the number one debugger in research, industry, and academia. -
48
Amazon SageMaker Feature Store is a fully managed, purpose-built repository to store, share, and manage features for machine learning (ML) models. Features are inputs to ML models used during training and inference. For example, in an application that recommends a music playlist, features could include song ratings, listening duration, and listener demographics. Features are used repeatedly by multiple teams and feature quality is critical to ensure a highly accurate model. Also, when features used to train models offline in batch are made available for real-time inference, it’s hard to keep the two feature stores synchronized. SageMaker Feature Store provides a secured and unified store for feature use across the ML lifecycle. Store, share, and manage ML model features for training and inference to promote feature reuse across ML applications. Ingest features from any data source including streaming and batch such as application logs, service logs, clickstreams, sensors, etc.
-
49
weinre
Apache Software Foundation
weinre is WEb INspector REmote. Pronounced like the word "winery". Or maybe like the word "weiner". weinre is a debugger for web pages, like FireBug (for Firefox) and web inspector (for WebKit-based browsers), except it's designed to work remotely, and in particular, to allow you to debug web pages on a mobile device such as a phone. weinre was built in an age when there were no remote debuggers available for mobile devices. Since then, some platforms are starting to provide remote debugger capabilities, as part of their platform toolset. weinre reuses the user interface code from the web inspector project at WebKit, so if you've used Safari's web inspector or Chrome's Developer Tools, weinre will be very familiar. In normal usage, you will be running the client application in a browser on your desktop/laptop, and running a target web page on your mobile device. weinre does not make use of any 'native' code in the browser, it's all plain old boring JavaScript. -
50
{CodeWhizz}
{CodeWhizz}
The AI-Powered Python and JavaScript Generator/Debugger/Tutor. Become a pro-coder in seconds. Generate pro-level code in an instant. Type what you need, run the program, and boom! The Whizzy AI model will compute your request and generate your code in an editable code window, so you can touch it up and personalize it however you need. Don't hassle with clunky and slow IDE's, the integrated CodeEngine will run your Python code and generate outputs, and plots, seamlessly. The ScriptRepo allows you to save your favorite creations with ease. We'll keep them secure so your can come back to them anytime. Limited availability. Request access now and secure your own personalized AI-Powered Python Code generation tool.Starting Price: $37.50 per month