Amazon EMRAmazon
|
||||||
Related Products
|
||||||
About
Amazon EMR is the industry-leading cloud big data platform for processing vast amounts of data using open-source tools such as Apache Spark, Apache Hive, Apache HBase, Apache Flink, Apache Hudi, and Presto. With EMR you can run Petabyte-scale analysis at less than half of the cost of traditional on-premises solutions and over 3x faster than standard Apache Spark. For short-running jobs, you can spin up and spin down clusters and pay per second for the instances used. For long-running workloads, you can create highly available clusters that automatically scale to meet demand. If you have existing on-premises deployments of open-source tools such as Apache Spark and Apache Hive, you can also run EMR clusters on AWS Outposts. Analyze data using open-source ML frameworks such as Apache Spark MLlib, TensorFlow, and Apache MXNet. Connect to Amazon SageMaker Studio for large-scale model training, analysis, and reporting.
|
About
Zipher is an autonomous optimization platform specifically designed to improve the performance and cost efficiency of Databricks workloads by eliminating manual tuning and resource management and continuously adjusting clusters in real time. It uses proprietary machine learning models and the only Spark-aware scaler that actively learns and profiles workloads to adjust cluster resources, select optimal configurations for every job run, and dynamically tune settings like hardware, Spark configs, and availability zones to maximize efficiency and cut waste. Zipher continuously monitors evolving workloads to adapt configurations, optimize scheduling, and allocate shared compute resources to meet SLAs, while providing detailed cost visibility that breaks down Databricks and cloud provider costs so teams can identify key cost drivers. It integrates seamlessly with major cloud service providers including AWS, Azure, and Google Cloud and works with common orchestration and IaC tools.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Companies that want to easily run and scale Apache Spark, Hive, Presto, and other big data frameworks
|
Audience
Data engineering and cloud infrastructure teams who run Databricks workloads and want to automate performance tuning and cost optimization with minimal manual effort
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationAmazon
Founded: 1994
United States
aws.amazon.com/emr/
|
Company InformationZipher
Founded: 2023
United States
zipher.cloud/
|
|||||
Alternatives |
Alternatives |
|||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Categories |
Categories |
|||||
Integrations
AWS Lake Formation
AWS Step Functions
Amazon Web Services (AWS)
Apache HBase
Apache Hive
Apache Spark
Azure Data Factory
EC2 Spot
Gurucul
Immuta
|
Integrations
AWS Lake Formation
AWS Step Functions
Amazon Web Services (AWS)
Apache HBase
Apache Hive
Apache Spark
Azure Data Factory
EC2 Spot
Gurucul
Immuta
|
|||||
|
|
|