Alternatives to Amazon EMR

Compare Amazon EMR alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Amazon EMR in 2024. Compare features, ratings, user reviews, pricing, and more from Amazon EMR competitors and alternatives in order to make an informed decision for your business.

  • 1
    Amazon Athena
    Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run. Athena is easy to use. Simply point to your data in Amazon S3, define the schema, and start querying using standard SQL. Most results are delivered within seconds. With Athena, there’s no need for complex ETL jobs to prepare your data for analysis. This makes it easy for anyone with SQL skills to quickly analyze large-scale datasets. Athena is out-of-the-box integrated with AWS Glue Data Catalog, allowing you to create a unified metadata repository across various services, crawl data sources to discover schemas and populate your Catalog with new and modified table and partition definitions, and maintain schema versioning.
  • 2
    Cloudera

    Cloudera

    Cloudera

    Manage and secure the data lifecycle from the Edge to AI in any cloud or data center. Operates across all major public clouds and the private cloud with a public cloud experience everywhere. Integrates data management and analytic experiences across the data lifecycle for data anywhere. Delivers security, compliance, migration, and metadata management across all environments. Open source, open integrations, extensible, & open to multiple data stores and compute architectures. Deliver easier, faster, and safer self-service analytics experiences. Provide self-service access to integrated, multi-function analytics on centrally managed and secured business data while deploying a consistent experience anywhere—on premises or in hybrid and multi-cloud. Enjoy consistent data security, governance, lineage, and control, while deploying the powerful, easy-to-use cloud analytics experiences business users require and eliminating their need for shadow IT solutions.
  • 3
    Cloudera Data Platform
    Unlock the potential of private and public clouds with the only hybrid data platform for modern data architectures with data anywhere. Cloudera is a hybrid data platform designed for unmatched freedom to choose—any cloud, any analytics, any data. Cloudera delivers faster and easier data management and data analytics for data anywhere, with optimal performance, scalability, and security. With Cloudera you get all the advantages of private cloud and public cloud for faster time to value and increased IT control. Cloudera provides the freedom to securely move data, applications, and users bi-directionally between the data center and multiple data clouds, regardless of where your data lives.
  • 4
    E-MapReduce
    EMR is an all-in-one enterprise-ready big data platform that provides cluster, job, and data management services based on open-source ecosystems, such as Hadoop, Spark, Kafka, Flink, and Storm. Alibaba Cloud Elastic MapReduce (EMR) is a big data processing solution that runs on the Alibaba Cloud platform. EMR is built on Alibaba Cloud ECS instances and is based on open-source Apache Hadoop and Apache Spark. EMR allows you to use the Hadoop and Spark ecosystem components, such as Apache Hive, Apache Kafka, Flink, Druid, and TensorFlow, to analyze and process data. You can use EMR to process data stored on different Alibaba Cloud data storage service, such as Object Storage Service (OSS), Log Service (SLS), and Relational Database Service (RDS). You can quickly create clusters without the need to configure hardware and software. All maintenance operations are completed on its Web interface.
  • 5
    Apache Spark

    Apache Spark

    Apache Software Foundation

    Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells. Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application. Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources. You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources.
  • 6
    Azure Databricks
    Unlock insights from all your data and build artificial intelligence (AI) solutions with Azure Databricks, set up your Apache Spark™ environment in minutes, autoscale, and collaborate on shared projects in an interactive workspace. Azure Databricks supports Python, Scala, R, Java, and SQL, as well as data science frameworks and libraries including TensorFlow, PyTorch, and scikit-learn. Azure Databricks provides the latest versions of Apache Spark and allows you to seamlessly integrate with open source libraries. Spin up clusters and build quickly in a fully managed Apache Spark environment with the global scale and availability of Azure. Clusters are set up, configured, and fine-tuned to ensure reliability and performance without the need for monitoring. Take advantage of autoscaling and auto-termination to improve total cost of ownership (TCO).
  • 7
    Azure HDInsight
    Run popular open-source frameworks—including Apache Hadoop, Spark, Hive, Kafka, and more—using Azure HDInsight, a customizable, enterprise-grade service for open-source analytics. Effortlessly process massive amounts of data and get all the benefits of the broad open-source project ecosystem with the global scale of Azure. Easily migrate your big data workloads and processing to the cloud. Open-source projects and clusters are easy to spin up quickly without the need to install hardware or manage infrastructure. Big data clusters reduce costs through autoscaling and pricing tiers that allow you to pay for only what you use. Enterprise-grade security and industry-leading compliance with more than 30 certifications helps protect your data. Optimized components for open-source technologies such as Hadoop and Spark keep you up to date.
  • 8
    Amazon MSK
    Amazon MSK is a fully managed service that makes it easy for you to build and run applications that use Apache Kafka to process streaming data. Apache Kafka is an open-source platform for building real-time streaming data pipelines and applications. With Amazon MSK, you can use native Apache Kafka APIs to populate data lakes, stream changes to and from databases, and power machine learning and analytics applications. Apache Kafka clusters are challenging to setup, scale, and manage in production. When you run Apache Kafka on your own, you need to provision servers, configure Apache Kafka manually, replace servers when they fail, orchestrate server patches and upgrades, architect the cluster for high availability, ensure data is durably stored and secured, setup monitoring and alarms, and carefully plan scaling events to support load changes.
    Starting Price: $0.0543 per hour
  • 9
    Apache PredictionIO
    Apache PredictionIO® is an open-source machine learning server built on top of a state-of-the-art open-source stack for developers and data scientists to create predictive engines for any machine learning task. It lets you quickly build and deploy an engine as a web service on production with customizable templates. Respond to dynamic queries in real-time once deployed as a web service, evaluate and tune multiple engine variants systematically, and unify data from multiple platforms in batch or in real-time for comprehensive predictive analytics. Speed up machine learning modeling with systematic processes and pre-built evaluation measures, support machine learning and data processing libraries such as Spark MLLib and OpenNLP. Implement your own machine learning models and seamlessly incorporate them into your engine. Simplify data infrastructure management. Apache PredictionIO® can be installed as a full machine learning stack, bundled with Apache Spark, MLlib, HBase, Akka HTTP, etc.
  • 10
    Delta Lake

    Delta Lake

    Delta Lake

    Delta Lake is an open-source storage layer that brings ACID transactions to Apache Spark™ and big data workloads. Data lakes typically have multiple data pipelines reading and writing data concurrently, and data engineers have to go through a tedious process to ensure data integrity, due to the lack of transactions. Delta Lake brings ACID transactions to your data lakes. It provides serializability, the strongest level of isolation level. Learn more at Diving into Delta Lake: Unpacking the Transaction Log. In big data, even the metadata itself can be "big data". Delta Lake treats metadata just like data, leveraging Spark's distributed processing power to handle all its metadata. As a result, Delta Lake can handle petabyte-scale tables with billions of partitions and files at ease. Delta Lake provides snapshots of data enabling developers to access and revert to earlier versions of data for audits, rollbacks or to reproduce experiments.
  • 11
    Horovod

    Horovod

    Horovod

    Horovod was originally developed by Uber to make distributed deep learning fast and easy to use, bringing model training time down from days and weeks to hours and minutes. With Horovod, an existing training script can be scaled up to run on hundreds of GPUs in just a few lines of Python code. Horovod can be installed on-premise or run out-of-the-box in cloud platforms, including AWS, Azure, and Databricks. Horovod can additionally run on top of Apache Spark, making it possible to unify data processing and model training into a single pipeline. Once Horovod has been configured, the same infrastructure can be used to train models with any framework, making it easy to switch between TensorFlow, PyTorch, MXNet, and future frameworks as machine learning tech stacks continue to evolve.
  • 12
    Google Cloud Dataproc
    Dataproc makes open source data and analytics processing fast, easy, and more secure in the cloud. Build custom OSS clusters on custom machines faster. Whether you need extra memory for Presto or GPUs for Apache Spark machine learning, Dataproc can help accelerate your data and analytics processing by spinning up a purpose-built cluster in 90 seconds. Easy and affordable cluster management. With autoscaling, idle cluster deletion, per-second pricing, and more, Dataproc can help reduce the total cost of ownership of OSS so you can focus your time and resources elsewhere. Security built in by default. Encryption by default helps ensure no piece of data is unprotected. With JobsAPI and Component Gateway, you can define permissions for Cloud IAM clusters, without having to set up networking or gateway nodes.
  • 13
    Apache Lucene

    Apache Lucene

    Apache Software Foundation

    The Apache Lucene™ project develops open-source search software. The project releases a core search library, named Lucene™ core, as well as PyLucene, a python binding for Lucene. Lucene Core is a Java library providing powerful indexing and search features, as well as spellchecking, hit highlighting and advanced analysis/tokenization capabilities. The PyLucene sub project provides Python bindings for Lucene Core. The Apache Software Foundation provides support for the Apache community of open-source software projects. Apache Lucene is distributed under a commercially friendly Apache Software license. Apache Lucene set the standard for search and indexing performance. Lucene is the search core of both Apache Solr™ and Elasticsearch™. Our core algorithms along with the Solr search server power applications the world over, ranging from mobile devices to sites like Twitter, Apple and Wikipedia. The goal of Apache Lucene is to provide world class search capabilities.
  • 14
    Apache Mahout

    Apache Mahout

    Apache Software Foundation

    Apache Mahout is a powerful, scalable, and versatile machine learning library designed for distributed data processing. It offers a comprehensive set of algorithms for various tasks, including classification, clustering, recommendation, and pattern mining. Built on top of the Apache Hadoop ecosystem, Mahout leverages MapReduce and Spark to enable data processing on large-scale datasets. Apache Mahout(TM) is a distributed linear algebra framework and mathematically expressive Scala DSL designed to let mathematicians, statisticians, and data scientists quickly implement their own algorithms. Apache Spark is the recommended out-of-the-box distributed back-end or can be extended to other distributed backends. Matrix computations are a fundamental part of many scientific and engineering applications, including machine learning, computer vision, and data analysis. Apache Mahout is designed to handle large-scale data processing by leveraging the power of Hadoop and Spark.
  • 15
    BigLake

    BigLake

    Google

    BigLake is a storage engine that unifies data warehouses and lakes by enabling BigQuery and open-source frameworks like Spark to access data with fine-grained access control. BigLake provides accelerated query performance across multi-cloud storage and open formats such as Apache Iceberg. Store a single copy of data with uniform features across data warehouses & lakes. Fine-grained access control and multi-cloud governance over distributed data. Seamless integration with open-source analytics tools and open data formats. Unlock analytics on distributed data regardless of where and how it’s stored, while choosing the best analytics tools, open source or cloud-native over a single copy of data. Fine-grained access control across open source engines like Apache Spark, Presto, and Trino, and open formats such as Parquet. Performant queries over data lakes powered by BigQuery. Integrates with Dataplex to provide management at scale, including logical data organization.
    Starting Price: $5 per TB
  • 16
    Amazon MWAA
    Amazon Managed Workflows for Apache Airflow (MWAA) is a managed orchestration service for Apache Airflow that makes it easier to set up and operate end-to-end data pipelines in the cloud at scale. Apache Airflow is an open-source tool used to programmatically author, schedule, and monitor sequences of processes and tasks referred to as “workflows.” With Managed Workflows, you can use Airflow and Python to create workflows without having to manage the underlying infrastructure for scalability, availability, and security. Managed Workflows automatically scales its workflow execution capacity to meet your needs, and is integrated with AWS security services to help provide you with fast and secure access to data.
    Starting Price: $0.49 per hour
  • 17
    IBM Analytics for Apache Spark
    IBM Analytics for Apache Spark is a flexible and integrated Spark service that empowers data science professionals to ask bigger, tougher questions, and deliver business value faster. It’s an easy-to-use, always-on managed service with no long-term commitment or risk, so you can begin exploring right away. Access the power of Apache Spark with no lock-in, backed by IBM’s open-source commitment and decades of enterprise experience. A managed Spark service with Notebooks as a connector means coding and analytics are easier and faster, so you can spend more of your time on delivery and innovation. A managed Apache Spark services gives you easy access to the power of built-in machine learning libraries without the headaches, time and risk associated with managing a Sparkcluster independently.
  • 18
    JanusGraph

    JanusGraph

    JanusGraph

    JanusGraph is a scalable graph database optimized for storing and querying graphs containing hundreds of billions of vertices and edges distributed across a multi-machine cluster. JanusGraph is a project under The Linux Foundation, and includes participants from Expero, Google, GRAKN.AI, Hortonworks, IBM and Amazon. Elastic and linear scalability for a growing data and user base. Data distribution and replication for performance and fault tolerance. Multi-datacenter high availability and hot backups. All functionality is totally free. No need to buy commercial licenses. JanusGraph is fully open source under the Apache 2 license. JanusGraph is a transactional database that can support thousands of concurrent users executing complex graph traversals in real time. Support for ACID and eventual consistency. In addition to online transactional processing (OLTP), JanusGraph supports global graph analytics (OLAP) with its Apache Spark integration.
  • 19
    Amazon Elastic Inference
    Amazon Elastic Inference allows you to attach low-cost GPU-powered acceleration to Amazon EC2 and Sagemaker instances or Amazon ECS tasks, to reduce the cost of running deep learning inference by up to 75%. Amazon Elastic Inference supports TensorFlow, Apache MXNet, PyTorch and ONNX models. Inference is the process of making predictions using a trained model. In deep learning applications, inference accounts for up to 90% of total operational costs for two reasons. Firstly, standalone GPU instances are typically designed for model training - not for inference. While training jobs batch process hundreds of data samples in parallel, inference jobs usually process a single input in real time, and thus consume a small amount of GPU compute. This makes standalone GPU inference cost-inefficient. On the other hand, standalone CPU instances are not specialized for matrix operations, and thus are often too slow for deep learning inference.
  • 20
    Apache Kafka

    Apache Kafka

    The Apache Software Foundation

    Apache Kafka® is an open-source, distributed streaming platform. Scale production clusters up to a thousand brokers, trillions of messages per day, petabytes of data, hundreds of thousands of partitions. Elastically expand and contract storage and processing. Stretch clusters efficiently over availability zones or connect separate clusters across geographic regions. Process streams of events with joins, aggregations, filters, transformations, and more, using event-time and exactly-once processing. Kafka’s out-of-the-box Connect interface integrates with hundreds of event sources and event sinks including Postgres, JMS, Elasticsearch, AWS S3, and more. Read, write, and process streams of events in a vast array of programming languages.
  • 21
    Titan

    Titan

    DataStax

    Titan is a scalable graph database optimized for storing and querying graphs containing hundreds of billions of vertices and edges distributed across a multi-machine cluster. Titan is a transactional database that can support thousands of concurrent users executing complex graph traversals in real time. Elastic and linear scalability for a growing data and user base. Data distribution and replication for performance and fault tolerance. Multi-datacenter high availability and hot backups. Support for ACID and eventual consistency. Support for various storage backends like Apache Cassandra, Apache HBase and Oracle BerkeleyDB. Support for global graph data analytics, reporting, and ETL through integration with big data platforms like Apache Spark, Apache Giraph and Apache Hadoop. Native integration with the TinkerPop graph stack for Gremlin graph query language, Gremlin graph server and Gremlin applications.
  • 22
    Stackable

    Stackable

    Stackable

    The Stackable data platform was designed with openness and flexibility in mind. It provides you with a curated selection of the best open source data apps like Apache Kafka, Apache Druid, Trino, and Apache Spark. While other current offerings either push their proprietary solutions or deepen vendor lock-in, Stackable takes a different approach. All data apps work together seamlessly and can be added or removed in no time. Based on Kubernetes, it runs everywhere, on-prem or in the cloud. stackablectl and a Kubernetes cluster are all you need to run your first stackable data platform. Within minutes, you will be ready to start working with your data. Configure your one-line startup command right here. Similar to kubectl, stackablectl is designed to easily interface with the Stackable Data Platform. Use the command line utility to deploy and manage stackable data apps on Kubernetes. With stackablectl, you can create, delete, and update components.
  • 23
    MinIO

    MinIO

    MinIO

    MinIO's high-performance object storage suite is software defined and enables customers to build cloud-native data infrastructure for machine learning, analytics and application data workloads. MinIO object storage is fundamentally different. Designed for performance and the S3 API, it is 100% open-source. MinIO is ideal for large, private cloud environments with stringent security requirements and delivers mission-critical availability across a diverse range of workloads. MinIO is the world's fastest object storage server. With READ/WRITE speeds of 183 GB/s and 171 GB/s on standard hardware, object storage can operate as the primary storage tier for a diverse set of workloads ranging from Spark, Presto, TensorFlow, H2O.ai as well as a replacement for Hadoop HDFS. MinIO leverages the hard won knowledge of the web scalers to bring a simple scaling model to object storage. At MinIO, scaling starts with a single cluster which can be federated with other MinIO clusters.
  • 24
    Apache Bigtop

    Apache Bigtop

    Apache Software Foundation

    Bigtop is an Apache Foundation project for Infrastructure Engineers and Data Scientists looking for comprehensive packaging, testing, and configuration of the leading open source big data components. Bigtop supports a wide range of components/projects, including, but not limited to, Hadoop, HBase and Spark. Bigtop packages Hadoop RPMs and DEBs, so that you can manage and maintain your Hadoop cluster. Bigtop provides an integrated smoke testing framework, alongside a suite of over 50 test files. Bigtop provides vagrant recipes, raw images, and (work-in-progress) docker recipes for deploying Hadoop from zero. Bigtop support many Operating Systems, including Debian, Ubuntu, CentOS, Fedora, openSUSE and many others. Bigtop includes tools and a framework for testing at various levels (packaging, platform, runtime, etc.) for both initial deployments as well as upgrade scenarios for the entire data platform, not just the individual components.
  • 25
    Apache Phoenix

    Apache Phoenix

    Apache Software Foundation

    Apache Phoenix enables OLTP and operational analytics in Hadoop for low-latency applications by combining the best of both worlds. The power of standard SQL and JDBC APIs with full ACID transaction capabilities and the flexibility of late-bound, schema-on-read capabilities from the NoSQL world by leveraging HBase as its backing store. Apache Phoenix is fully integrated with other Hadoop products such as Spark, Hive, Pig, Flume, and Map Reduce. Become the trusted data platform for OLTP and operational analytics for Hadoop through well-defined, industry-standard APIs. Apache Phoenix takes your SQL query, compiles it into a series of HBase scans, and orchestrates the running of those scans to produce regular JDBC result sets. Direct use of the HBase API, along with coprocessors and custom filters, results in performance on the order of milliseconds for small queries, or seconds for tens of millions of rows.
  • 26
    AWS Deep Learning AMIs
    AWS Deep Learning AMIs (DLAMI) provides ML practitioners and researchers with a curated and secure set of frameworks, dependencies, and tools to accelerate deep learning in the cloud. Built for Amazon Linux and Ubuntu, Amazon Machine Images (AMIs) come preconfigured with TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, allowing you to quickly deploy and run these frameworks and tools at scale. Develop advanced ML models at scale to develop autonomous vehicle (AV) technology safely by validating models with millions of supported virtual tests. Accelerate the installation and configuration of AWS instances, and speed up experimentation and evaluation with up-to-date frameworks and libraries, including Hugging Face Transformers. Use advanced analytics, ML, and deep learning capabilities to identify trends and make predictions from raw, disparate health data.
  • 27
    Apache APISIX

    Apache APISIX

    Apache APISIX

    Apache APISIX provides rich traffic management features like Load Balancing, Dynamic Upstream, Canary Release, Circuit Breaking, Authentication, Observability, etc. Apache APISIX provides open source API Gateway to help you manage microservices, delivering the ultimate performance, security, and scalable platform for all your APIs and microservices. Apache APISIX is the first open-source API Gateway that includes a built-in low-code Dashboard, which offers a powerful and flexible UI for developers to use. The Apache APISIX Dashboard is designed to make it as easy as possible for users to operate Apache APISIX through a frontend interface. It’s open-source and ever evolving, feel free to contribute. The Apache APISIX dashboard is flexible to User demand, providing option to create custom modules through code matching your requirements, alongside the existing no-code toolchain.
  • 28
    IBM Data Refinery
    Available in IBM Watson® Studio and Watson™ Knowledge Catalog, the data refinery tool saves data preparation time by quickly transforming large amounts of raw data into consumable, quality information that’s ready for analytics. Interactively discover, cleanse, and transform your data with over 100 built-in operations. No coding skills are required. Understand the quality and distribution of your data using dozens of built-in charts, graphs, and statistics. Automatically detect data types and business classifications. Access and explore data residing in a wide spectrum of data sources within your organization or the cloud. Automatically enforce policies set by data governance professionals. Schedule data flow executions for repeatable outcomes. Monitor results and receive notifications. Easily scale out via Apache Spark to apply transformation recipes on full data sets. No management of Apache Spark clusters needed.
  • 29
    Apache Beam

    Apache Beam

    Apache Software Foundation

    The easiest way to do batch and streaming data processing. Write once, run anywhere data processing for mission-critical production workloads. Beam reads your data from a diverse set of supported sources, no matter if it’s on-prem or in the cloud. Beam executes your business logic for both batch and streaming use cases. Beam writes the results of your data processing logic to the most popular data sinks in the industry. A simplified, single programming model for both batch and streaming use cases for every member of your data and application teams. Apache Beam is extensible, with projects such as TensorFlow Extended and Apache Hop built on top of Apache Beam. Execute pipelines on multiple execution environments (runners), providing flexibility and avoiding lock-in. Open, community-based development and support to help evolve your application and meet the needs of your specific use cases.
  • 30
    Apache Hive

    Apache Hive

    Apache Software Foundation

    The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage using SQL. Structure can be projected onto data already in storage. A command line tool and JDBC driver are provided to connect users to Hive. Apache Hive is an open source project run by volunteers at the Apache Software Foundation. Previously it was a subproject of Apache® Hadoop®, but has now graduated to become a top-level project of its own. We encourage you to learn about the project and contribute your expertise. Traditional SQL queries must be implemented in the MapReduce Java API to execute SQL applications and queries over distributed data. Hive provides the necessary SQL abstraction to integrate SQL-like queries (HiveQL) into the underlying Java without the need to implement queries in the low-level Java API.
  • 31
    Apache ServiceMix

    Apache ServiceMix

    Apache Software Foundation

    Apache ServiceMix is a flexible, open-source integration container that unifies the features and functionality of Apache ActiveMQ, Camel, CXF, and Karaf into a powerful runtime platform you can use to build your own integrations solutions. It provides a complete, enterprise ready ESB exclusively powered by OSGi. Reliable messaging with Apache ActiveMQ. Messaging, routing and Enterprise Integration Patterns with Apache Camel. WS and RESTful web services with Apache CXF. OSGi-based server runtime powered by Apache Karaf. BPM engine via Activiti. Full JPA support via Apache OpenJPA. XA transaction management via JTA via Apache Aries. Legacy support for the JBI standard (deprecated after the ServiceMix 3.x series) through the Apache ServiceMix NMR that includes a rich Event, Messaging and Audit API. Applications for ServiceMix can be built using OSGi Blueprint, OSGi Declarative Services, and Spring DM (legacy).
  • 32
    Deeplearning4j

    Deeplearning4j

    Deeplearning4j

    DL4J takes advantage of the latest distributed computing frameworks including Apache Spark and Hadoop to accelerate training. On multi-GPUs, it is equal to Caffe in performance. The libraries are completely open-source, Apache 2.0, and maintained by the developer community and Konduit team. Deeplearning4j is written in Java and is compatible with any JVM language, such as Scala, Clojure, or Kotlin. The underlying computations are written in C, C++, and Cuda. Keras will serve as the Python API. Eclipse Deeplearning4j is the first commercial-grade, open-source, distributed deep-learning library written for Java and Scala. Integrated with Hadoop and Apache Spark, DL4J brings AI to business environments for use on distributed GPUs and CPUs. There are a lot of parameters to adjust when you're training a deep-learning network. We've done our best to explain them, so that Deeplearning4j can serve as a DIY tool for Java, Scala, Clojure, and Kotlin programmers.
  • 33
    GeoSpock

    GeoSpock

    GeoSpock

    GeoSpock enables data fusion for the connected world with GeoSpock DB – the space-time analytics database. GeoSpock DB is a unique, cloud-native database optimised for querying for real-world use cases, able to fuse multiple sources of Internet of Things (IoT) data together to unlock its full value, whilst simultaneously reducing complexity and cost. GeoSpock DB enables efficient storage, data fusion, and rapid programmatic access to data, and allows you to run ANSI SQL queries and connect to analytics tools via JDBC/ODBC connectors. Users are able to perform analysis and share insights using familiar toolsets, with support for common BI tools (such as Tableau™, Amazon QuickSight™, and Microsoft Power BI™), and Data Science and Machine Learning environments (including Python Notebooks and Apache Spark). The database can also be integrated with internal applications and web services – with compatibility for open-source and visualisation libraries such as Kepler and Cesium.js.
  • 34
    SiteWhere

    SiteWhere

    SiteWhere

    SiteWhere infrastructure and microservices are deployed on Kubernetes, allowing for deployment on-premise or almost any cloud provider. Highly-available configurations of Apache Kafka, Zookeeper, and Hashicorp Consul provide infrastructure. Each microservice scales independently and integrates automatically. Complete multitenant IoT ecosystem including device management, event ingestion, big data event storage, REST APIs, data integration, and much more. Distributed architecture built with Java microservices running on Docker infrastructure with Apache Kafka processing pipeline. SiteWhere CE will always be open source and free for private as well as commercial use. The SiteWhere team offers free basic support and a steady stream of new features.
  • 35
    Apache Giraph

    Apache Giraph

    Apache Software Foundation

    Apache Giraph is an iterative graph processing system built for high scalability. For example, it is currently used at Facebook to analyze the social graph formed by users and their connections. Giraph originated as the open-source counterpart to Pregel, the graph processing architecture developed at Google and described in a 2010 paper. Both systems are inspired by the Bulk Synchronous Parallel model of distributed computation introduced by Leslie Valiant. Giraph adds several features beyond the basic Pregel model, including master computation, sharded aggregators, edge-oriented input, out-of-core computation, and more. With a steady development cycle and a growing community of users worldwide, Giraph is a natural choice for unleashing the potential of structured datasets at a massive scale. Apache Giraph is an iterative graph processing framework, built on top of Apache Hadoop.
  • 36
    IBM Analytics Engine
    IBM Analytics Engine provides an architecture for Hadoop clusters that decouples the compute and storage tiers. Instead of a permanent cluster formed of dual-purpose nodes, the Analytics Engine allows users to store data in an object storage layer such as IBM Cloud Object Storage and spins up clusters of computing notes when needed. Separating compute from storage helps to transform the flexibility, scalability and maintainability of big data analytics platforms. Build on an ODPi compliant stack with pioneering data science tools with the broader Apache Hadoop and Apache Spark ecosystem. Define clusters based on your application's requirements. Choose the appropriate software pack, version, and size of the cluster. Use as long as required and delete as soon as an application finishes jobs. Configure clusters with third-party analytics libraries and packages. Deploy workloads from IBM Cloud services like machine learning.
    Starting Price: $0.014 per hour
  • 37
    Apache Tomcat
    The Apache Tomcat® software is an open source implementation of the Jakarta Servlet, Jakarta Server Pages, Jakarta Expression Language, Jakarta WebSocket, Jakarta Annotations and Jakarta Authentication specifications. These specifications are part of the Jakarta EE platform. Apache Tomcat software powers numerous large-scale, mission-critical web applications across a diverse range of industries and organizations. Some of these users and their stories are listed on the PoweredBy wiki page. The Apache Tomcat Project is proud to announce the release of version 10.0.10 of Apache Tomcat. This release implements specifications that are part of the Jakarta EE 9 platform.
  • 38
    IBM Cloud SQL Query
    Serverless, interactive querying for analyzing data in IBM Cloud Object Storage. Query your data directly where it is stored, there's no ETL, no databases, and no infrastructure to manage. IBM Cloud SQL Query uses Apache Spark, an open-source, fast, extensible, in-memory data processing engine optimized for low latency and ad hoc analysis of data. No ETL or schema definition needed to enable SQL queries. Analyze data where it sits in IBM Cloud Object Storage using our query editor and REST API. Run as many queries as you need; with pay-per-query pricing, you pay only for the data scan. Compress or partition data to drive savings and performance. IBM Cloud SQL Query is highly available and executes queries using compute resources across multiple facilities. IBM Cloud SQL Query supports a variety of data formats such as CSV, JSON and Parquet, and allows for standard ANSI SQL.
    Starting Price: $5.00/Terabyte-Month
  • 39
    PDFBox

    PDFBox

    Apache Software Foundation

    The Apache PDFBox® library is an open-source Java tool for working with PDF documents. This project allows the creation of new PDF documents, manipulation of existing documents and the ability to extract content from documents. Apache PDFBox also includes several command-line utilities. Apache PDFBox is published under the Apache License v2.0. Extract Unicode text from PDF files. Split a single PDF into many files or merge multiple PDF files. Extract data from PDF forms or fill a PDF form. Validate PDF files against the PDF/A-1b standard. Print a PDF file using the standard Java printing API. Create a PDF from scratch, with embedded fonts and images. Save PDFs as image files, such as PNG or JPEG and digitally sign PDF files. See also the export control information related to the encryption features included in Apache PDFBox.
  • 40
    PySpark

    PySpark

    PySpark

    PySpark is an interface for Apache Spark in Python. It not only allows you to write Spark applications using Python APIs, but also provides the PySpark shell for interactively analyzing your data in a distributed environment. PySpark supports most of Spark’s features such as Spark SQL, DataFrame, Streaming, MLlib (Machine Learning) and Spark Core. Spark SQL is a Spark module for structured data processing. It provides a programming abstraction called DataFrame and can also act as distributed SQL query engine. Running on top of Spark, the streaming feature in Apache Spark enables powerful interactive and analytical applications across both streaming and historical data, while inheriting Spark’s ease of use and fault tolerance characteristics.
  • 41
    Apache Sentry

    Apache Sentry

    Apache Software Foundation

    Apache Sentry™ is a system for enforcing fine grained role based authorization to data and metadata stored on a Hadoop cluster. Apache Sentry has successfully graduated from the Incubator in March of 2016 and is now a Top-Level Apache project. Apache Sentry is a granular, role-based authorization module for Hadoop. Sentry provides the ability to control and enforce precise levels of privileges on data for authenticated users and applications on a Hadoop cluster. Sentry currently works out of the box with Apache Hive, Hive Metastore/HCatalog, Apache Solr, Impala and HDFS (limited to Hive table data). Sentry is designed to be a pluggable authorization engine for Hadoop components. It allows you to define authorization rules to validate a user or application’s access requests for Hadoop resources. Sentry is highly modular and can support authorization for a wide variety of data models in Hadoop.
  • 42
    Apache Flink

    Apache Flink

    Apache Software Foundation

    Apache Flink is a framework and distributed processing engine for stateful computations over unbounded and bounded data streams. Flink has been designed to run in all common cluster environments, perform computations at in-memory speed and at any scale. Any kind of data is produced as a stream of events. Credit card transactions, sensor measurements, machine logs, or user interactions on a website or mobile application, all of these data are generated as a stream. Apache Flink excels at processing unbounded and bounded data sets. Precise control of time and state enable Flink’s runtime to run any kind of application on unbounded streams. Bounded streams are internally processed by algorithms and data structures that are specifically designed for fixed sized data sets, yielding excellent performance. Flink is designed to work well each of the previously listed resource managers.
  • 43
    Apache Impala
    Impala provides low latency and high concurrency for BI/analytic queries on the Hadoop ecosystem, including Iceberg, open data formats, and most cloud storage options. Impala also scales linearly, even in multitenant environments. Impala is integrated with native Hadoop security and Kerberos for authentication, and via the Ranger module, you can ensure that the right users and applications are authorized for the right data. Utilize the same file and data formats and metadata, security, and resource management frameworks as your Hadoop deployment, with no redundant infrastructure or data conversion/duplication. For Apache Hive users, Impala utilizes the same metadata and ODBC driver. Like Hive, Impala supports SQL, so you don't have to worry about reinventing the implementation wheel. With Impala, more users, whether using SQL queries or BI applications, can interact with more data through a single repository and metadata stored from source through analysis.
  • 44
    DataStax

    DataStax

    DataStax

    The Open, Multi-Cloud Stack for Modern Data Apps. Built on open-source Apache Cassandra™. Global-scale and 100% uptime without vendor lock-in. Deploy on multi-cloud, on-prem, open-source, and Kubernetes. Elastic and pay-as-you-go for improved TCO. Start building faster with Stargate APIs for NoSQL, real-time, reactive, JSON, REST, and GraphQL. Skip the complexity of multiple OSS projects and APIs that don’t scale. Ideal for commerce, mobile, AI/ML, IoT, microservices, social, gaming, and richly interactive applications that must scale-up and scale-down with demand. Get building modern data applications with Astra, a database-as-a-service powered by Apache Cassandra™. Use REST, GraphQL, JSON with your favorite full-stack framework Richly interactive apps that are elastic and viral-ready from Day 1. Pay-as-you-go Apache Cassandra DBaaS that scales effortlessly and affordably.
  • 45
    Greenplum

    Greenplum

    Greenplum Database

    Greenplum Database® is an advanced, fully featured, open source data warehouse. It provides powerful and rapid analytics on petabyte scale data volumes. Uniquely geared toward big data analytics, Greenplum Database is powered by the world’s most advanced cost-based query optimizer delivering high analytical query performance on large data volumes. Greenplum Database® project is released under the Apache 2 license. We want to thank all our current community contributors and are interested in all new potential contributions. For the Greenplum Database community no contribution is too small, we encourage all types of contributions. An open-source massively parallel data platform for analytics, machine learning and AI. Rapidly create and deploy models for complex applications in cybersecurity, predictive maintenance, risk management, fraud detection, and many other areas. Experience the fully featured, integrated, open source analytics platform.
  • 46
    Spark NLP

    Spark NLP

    John Snow Labs

    Experience the power of large language models like never before, unleashing the full potential of Natural Language Processing (NLP) with Spark NLP, the open source library that delivers scalable LLMs. The full code base is open under the Apache 2.0 license, including pre-trained models and pipelines. The only NLP library built natively on Apache Spark. The most widely used NLP library in the enterprise. Spark ML provides a set of machine learning applications that can be built using two main components, estimators and transformers. The estimators have a method that secures and trains a piece of data to such an application. The transformer is generally the result of a fitting process and applies changes to the target dataset. These components have been embedded to be applicable to Spark NLP. Pipelines are a mechanism for combining multiple estimators and transformers in a single workflow. They allow multiple chained transformations along a machine-learning task.
  • 47
    Apache Geronimo
    Apache Geronimo is an open-source set of projects that are focused on providing JavaEE/JakartaEE libraries and Microprofile implementations. We are actively delivering reusable Java EE components though. They are widely used and still actively maintained! Apache Geronimo provides libraries for the implementations of the Java EE and Jakarta EE specifications. The implementations are also focused on providing OSGi bundle metadata. The goal of XBean project is to create a plugin-based server analogous to Eclipse is a plugin-based IDE. XBean will be able to discover, download and install server plugins from an Internet-based repository. In addition, we include support for multiple IoC systems, support for running with no IoC system, JMX without JMX code, lifecycle and class loader management, and rock-solid Spring integration. Apache Geronimo hosts several Microprofile implementations. Apache Geronimo Arthur is an effort to build a thin layer on top of Oracle GraalVM.
  • 48
    Luna for Apache Cassandra
    Luna is a subscription to the Apache Cassandra support and expertise at DataStax. It allows you to enjoy all the benefits of open-source Cassandra, with the peace of mind knowing you have direct access to the team that authored the majority of the code and supported some of the largest deployments in the world. Best practices, advice, and SLA-based support to keep your Cassandra deployment in top shape. Scale without compromising on performance or latency to seamlessly manage the most demanding real-time workloads. Create real-time and highly-interactive customer experiences with blisteringly fast read and writes. Luna provides assistance with resolving issues and following best practices with Cassandra clusters. Services provide help through the full application life cycle, with a deeper integration in your team working together on implementation.
  • 49
    Apache Eagle

    Apache Eagle

    Apache Software Foundation

    Apache Eagle (called Eagle in the following) is an open source analytics solution for identifying security and performance issues instantly on big data platforms, e.g. Apache Hadoop, Apache Spark etc. It analyzes data activities, yarn applications, jmx metrics, and daemon logs etc., provides state-of-the-art alert engine to identify security breach, performance issues and shows insights. Big data platform normally generates huge amount of operational logs and metrics in realtime. Eagle is founded to solve hard problems in securing and tuning performance for big data platforms by ensuring metrics, logs always available and alerting immediately even under huge traffic. Streaming operational logs and data activities into Eagle platform, including but not limited to audit logs, map/reduce jobs, yarn resource usage, jmx metrics and various daemon logs etc. Generate alerts, show historical trend, and correlate alert with raw data.
  • 50
    SpamAssassin

    SpamAssassin

    Apache Software Foundation

    Welcome to the home page for the open-source Apache SpamAssassin Project. Apache SpamAssassin is the #1 Open Source anti-spam platform giving system administrators a filter to classify email and block spam (unsolicited bulk email). It uses a robust scoring framework and plug-ins to integrate a wide range of advanced heuristic and statistical analysis tests on email headers and body text including text analysis, Bayesian filtering, DNS blocklists, and collaborative filtering databases. Looking for tips to improve your existing installation? Click here for a variety of topics in our Wiki that might help. SpamAssassin uses a wide variety of local and network tests to identify spam signatures. This makes it harder for spammers to identify one aspect which they can craft their messages to work around.