Best Artificial Intelligence Software for AWS Glue

Compare the Top Artificial Intelligence Software that integrates with AWS Glue as of October 2025

This a list of Artificial Intelligence software that integrates with AWS Glue. Use the filters on the left to add additional filters for products that have integrations with AWS Glue. View the products that work with AWS Glue in the table below.

What is Artificial Intelligence Software for AWS Glue?

Artificial Intelligence (AI) software is computer technology designed to simulate human intelligence. It can be used to perform tasks that require cognitive abilities, such as problem-solving, data analysis, visual perception and language translation. AI applications range from voice recognition and virtual assistants to autonomous vehicles and medical diagnostics. Compare and read user reviews of the best Artificial Intelligence software for AWS Glue currently available using the table below. This list is updated regularly.

  • 1
    New Relic

    New Relic

    New Relic

    There are an estimated 25 million engineers in the world across dozens of distinct functions. As every company becomes a software company, engineers are using New Relic to gather real-time insights and trending data about the performance of their software so they can be more resilient and deliver exceptional customer experiences. Only New Relic provides an all-in-one platform that is built and sold as a unified experience. With New Relic, customers get access to a secure telemetry cloud for all metrics, events, logs, and traces; powerful full-stack analysis tools; and simple, transparent usage-based pricing with only 2 key metrics. New Relic has also curated one of the industry’s largest ecosystems of open source integrations, making it easy for every engineer to get started with observability and use New Relic alongside their other favorite applications.
    Leader badge
    Starting Price: Free
    View Software
    Visit Website
  • 2
    DataBuck

    DataBuck

    FirstEigen

    DataBuck is an AI-powered data validation platform that automates risk detection across dynamic, high-volume, and evolving data environments. DataBuck empowers your teams to: ✅ Enhance trust in analytics and reports, ensuring they are built on accurate and reliable data. ✅ Reduce maintenance costs by minimizing manual intervention. ✅ Scale operations 10x faster compared to traditional tools, enabling seamless adaptability in ever-changing data ecosystems. By proactively addressing system risks and improving data accuracy, DataBuck ensures your decision-making is driven by dependable insights. Proudly recognized in Gartner’s 2024 Market Guide for #DataObservability, DataBuck goes beyond traditional observability practices with its AI/ML innovations to deliver autonomous Data Trustability—empowering you to lead with confidence in today’s data-driven world.
    View Software
    Visit Website
  • 3
    DataHub

    DataHub

    DataHub

    DataHub is an open source metadata platform designed to streamline data discovery, observability, and governance across diverse data ecosystems. It enables organizations to effortlessly discover trustworthy data, with experiences tailored for each person and eliminates breaking changes with detailed cross-platform and column-level lineage. DataHub builds confidence in your data by providing a comprehensive view of business, operational, and technical context, all in one place. The platform offers automated data quality checks and AI-driven anomaly detection, notifying teams when issues arise and centralizing incident tracking. With detailed lineage, documentation, and ownership information, DataHub facilitates swift issue resolution. It also automates governance programs by classifying assets as they evolve, minimizing manual work through GenAI documentation, AI-driven classification, and smart propagation. DataHub's extensible architecture supports over 70 native integrations.
    Starting Price: Free
  • 4
    Saagie

    Saagie

    Saagie

    The Saagie cloud data factory is a turnkey platform that lets you create and manage all your data & AI projects in a single interface, deployable in just a few clicks. Develop your use cases and test your AI models in a secure way with the Saagie data factory. Get your data and AI projects off the ground with a single interface and centralize your teams to make rapid progress. Whatever your maturity level, from your first data project to a data & AI-driven strategy, the Saagie platform is there for you. Simplify your workflows, boost your productivity, and make more informed decisions by unifying your work on a single platform. Transform your raw data into powerful insights by orchestrating your data pipelines. Get quick access to the information you need to make more informed decisions. Simplify the management and scalability of your data and AI infrastructure. Accelerate the time-to-production of your AI, machine learning, and deep learning models.
  • 5
    AWS Marketplace
    AWS Marketplace is a curated digital catalog that enables customers to discover, purchase, deploy, and manage third-party software, data products, AI agents, and services directly within the AWS ecosystem. It provides access to thousands of listings across categories like security, machine learning, business applications, and DevOps tools. With flexible pricing models such as pay-as-you-go, annual subscriptions, and free trials, AWS Marketplace simplifies procurement and billing by integrating costs into a single AWS invoice. It also supports rapid deployment with pre-configured software that can be launched on AWS infrastructure. This streamlined approach allows businesses to accelerate innovation, reduce time-to-market, and maintain better control over software usage and costs.
  • 6
    Privacera

    Privacera

    Privacera

    At the intersection of data governance, privacy, and security, Privacera’s unified data access governance platform maximizes the value of data by providing secure data access control and governance across hybrid- and multi-cloud environments. The hybrid platform centralizes access and natively enforces policies across multiple cloud services—AWS, Azure, Google Cloud, Databricks, Snowflake, Starburst and more—to democratize trusted data enterprise-wide without compromising compliance with regulations such as GDPR, CCPA, LGPD, or HIPAA. Trusted by Fortune 500 customers across finance, insurance, retail, healthcare, media, public and the federal sector, Privacera is the industry’s leading data access governance platform that delivers unmatched scalability, elasticity, and performance. Headquartered in Fremont, California, Privacera was founded in 2016 to manage cloud data privacy and security by the creators of Apache Ranger™ and Apache Atlas™.
  • 7
    Amazon SageMaker Studio
    Amazon SageMaker Studio is an integrated development environment (IDE) that provides a single web-based visual interface where you can access purpose-built tools to perform all machine learning (ML) development steps, from preparing data to building, training, and deploying your ML models, improving data science team productivity by up to 10x. You can quickly upload data, create new notebooks, train and tune models, move back and forth between steps to adjust experiments, collaborate seamlessly within your organization, and deploy models to production without leaving SageMaker Studio. Perform all ML development steps, from preparing raw data to deploying and monitoring ML models, with access to the most comprehensive set of tools in a single web-based visual interface. Amazon SageMaker Unified Studio is a comprehensive, AI and data development environment designed to streamline workflows and simplify the process of building and deploying machine learning models.
  • 8
    Amazon SageMaker Feature Store
    Amazon SageMaker Feature Store is a fully managed, purpose-built repository to store, share, and manage features for machine learning (ML) models. Features are inputs to ML models used during training and inference. For example, in an application that recommends a music playlist, features could include song ratings, listening duration, and listener demographics. Features are used repeatedly by multiple teams and feature quality is critical to ensure a highly accurate model. Also, when features used to train models offline in batch are made available for real-time inference, it’s hard to keep the two feature stores synchronized. SageMaker Feature Store provides a secured and unified store for feature use across the ML lifecycle. Store, share, and manage ML model features for training and inference to promote feature reuse across ML applications. Ingest features from any data source including streaming and batch such as application logs, service logs, clickstreams, sensors, etc.
  • 9
    Acryl Data

    Acryl Data

    Acryl Data

    No more data catalog ghost towns. Acryl Cloud drives fast time-to-value via Shift Left practices for data producers and an intuitive UI for data consumers. Continuously detect data quality incidents in real-time, automate anomaly detection to prevent breakages, and drive fast resolution when they do occur. Acryl Cloud supports both push-based and pull-based metadata ingestion for easy maintenance, ensuring information is trustworthy, up-to-date, and definitive. Data should be operational. Go beyond simple visibility and use automated Metadata Tests to continuously expose data insights and surface new areas for improvement. Reduce confusion and accelerate resolution with clear asset ownership, automatic detection, streamlined alerts, and time-based lineage for tracing root causes.
  • 10
    Unity Catalog

    Unity Catalog

    Databricks

    Databricks Unity Catalog is the industry’s only unified and open governance solution for data and AI, built into the Databricks Data Intelligence Platform. With Unity Catalog, organizations can seamlessly govern both structured and unstructured data in any format, as well as machine learning models, notebooks, dashboards, and files across any cloud or platform. Data scientists, analysts, and engineers can securely discover, access, and collaborate on trusted data and AI assets across platforms, leveraging AI to boost productivity and unlock the full potential of the lakehouse environment. This unified and open approach to governance promotes interoperability and accelerates data and AI initiatives while simplifying regulatory compliance. Easily discover and classify both structured and unstructured data in any format, including machine learning models, notebooks, dashboards, and files across all cloud platforms.
  • 11
    Amazon SageMaker Unified Studio
    Amazon SageMaker Unified Studio is a comprehensive, AI and data development environment designed to streamline workflows and simplify the process of building and deploying machine learning models. Built on Amazon DataZone, it integrates various AWS analytics and AI/ML services, such as Amazon EMR, AWS Glue, and Amazon Bedrock, into a single platform. Users can discover, access, and process data from various sources like Amazon S3 and Redshift, and develop generative AI applications. With tools for model development, governance, MLOps, and AI customization, SageMaker Unified Studio provides an efficient, secure, and collaborative environment for data teams.
  • Previous
  • You're on page 1
  • Next