Best AI/ML Model Training Platforms for Amazon Web Services (AWS)

Compare the Top AI/ML Model Training Platforms that integrate with Amazon Web Services (AWS) as of August 2025

This a list of AI/ML Model Training platforms that integrate with Amazon Web Services (AWS). Use the filters on the left to add additional filters for products that have integrations with Amazon Web Services (AWS). View the products that work with Amazon Web Services (AWS) in the table below.

What are AI/ML Model Training Platforms for Amazon Web Services (AWS)?

AI/ML model training platforms are software solutions designed to streamline the development, training, and deployment of machine learning and artificial intelligence models. These platforms provide tools and infrastructure for data preprocessing, model selection, hyperparameter tuning, and training in a variety of domains, such as natural language processing, computer vision, and predictive analytics. They often include features for distributed computing, enabling the use of multiple processors or cloud resources to speed up the training process. Additionally, model training platforms typically offer integrated monitoring and debugging tools to track model performance and adjust training strategies in real time. By simplifying the complex process of building AI models, these platforms enable faster development cycles and more accurate predictive models. Compare and read user reviews of the best AI/ML Model Training platforms for Amazon Web Services (AWS) currently available using the table below. This list is updated regularly.

  • 1
    RunPod

    RunPod

    RunPod

    RunPod offers a cloud-based platform designed for running AI workloads, focusing on providing scalable, on-demand GPU resources to accelerate machine learning (ML) model training and inference. With its diverse selection of powerful GPUs like the NVIDIA A100, RTX 3090, and H100, RunPod supports a wide range of AI applications, from deep learning to data processing. The platform is designed to minimize startup time, providing near-instant access to GPU pods, and ensures scalability with autoscaling capabilities for real-time AI model deployment. RunPod also offers serverless functionality, job queuing, and real-time analytics, making it an ideal solution for businesses needing flexible, cost-effective GPU resources without the hassle of managing infrastructure.
    Starting Price: $0.40 per hour
    View Platform
    Visit Website
  • 2
    Compute with Hivenet
    Compute with Hivenet is the world's first truly distributed cloud computing platform, providing reliable and affordable on-demand computing power from a certified network of contributors. Designed for AI model training, inference, and other compute-intensive tasks, it provides secure, scalable, and on-demand GPU resources at up to 70% cost savings compared to traditional cloud providers. Powered by RTX 4090 GPUs, Compute rivals top-tier platforms, offering affordable, transparent pricing with no hidden fees. Compute is part of the Hivenet ecosystem, a comprehensive suite of distributed cloud solutions that prioritizes sustainability, security, and affordability. Through Hivenet, users can leverage their underutilized hardware to contribute to a powerful, distributed cloud infrastructure.
    Starting Price: $0.10/hour
  • 3
    PyTorch

    PyTorch

    PyTorch

    Transition seamlessly between eager and graph modes with TorchScript, and accelerate the path to production with TorchServe. Scalable distributed training and performance optimization in research and production is enabled by the torch-distributed backend. A rich ecosystem of tools and libraries extends PyTorch and supports development in computer vision, NLP and more. PyTorch is well supported on major cloud platforms, providing frictionless development and easy scaling. Select your preferences and run the install command. Stable represents the most currently tested and supported version of PyTorch. This should be suitable for many users. Preview is available if you want the latest, not fully tested and supported, 1.10 builds that are generated nightly. Please ensure that you have met the prerequisites (e.g., numpy), depending on your package manager. Anaconda is our recommended package manager since it installs all dependencies.
  • 4
    Deepgram

    Deepgram

    Deepgram

    Deploy accurate speech recognition at scale while continuously improving model performance by labeling data and training from a single console. We deliver state-of-the-art speech recognition and understanding at scale. We do it by providing cutting-edge model training and data-labeling alongside flexible deployment options. Our platform recognizes multiple languages, accents, and words, dynamically tuning to the needs of your business with every training session. The fastest, most accurate, most reliable, most scalable speech transcription, with understanding — rebuilt just for enterprise. We’ve reinvented ASR with 100% deep learning that allows companies to continuously improve accuracy. Stop waiting for the big tech players to improve their software and forcing your developers to manually boost accuracy with keywords in every API call. Start training your speech model and reaping the benefits in weeks, not months or years.
    Starting Price: $0
  • 5
    Intel Tiber AI Studio
    Intel® Tiber™ AI Studio is a comprehensive machine learning operating system that unifies and simplifies the AI development process. The platform supports a wide range of AI workloads, providing a hybrid and multi-cloud infrastructure that accelerates ML pipeline development, model training, and deployment. With its native Kubernetes orchestration and meta-scheduler, Tiber™ AI Studio offers complete flexibility in managing on-prem and cloud resources. Its scalable MLOps solution enables data scientists to easily experiment, collaborate, and automate their ML workflows while ensuring efficient and cost-effective utilization of resources.
  • 6
    Horovod

    Horovod

    Horovod

    Horovod was originally developed by Uber to make distributed deep learning fast and easy to use, bringing model training time down from days and weeks to hours and minutes. With Horovod, an existing training script can be scaled up to run on hundreds of GPUs in just a few lines of Python code. Horovod can be installed on-premise or run out-of-the-box in cloud platforms, including AWS, Azure, and Databricks. Horovod can additionally run on top of Apache Spark, making it possible to unify data processing and model training into a single pipeline. Once Horovod has been configured, the same infrastructure can be used to train models with any framework, making it easy to switch between TensorFlow, PyTorch, MXNet, and future frameworks as machine learning tech stacks continue to evolve.
    Starting Price: Free
  • 7
    Caffe

    Caffe

    BAIR

    Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR) and by community contributors. Yangqing Jia created the project during his PhD at UC Berkeley. Caffe is released under the BSD 2-Clause license. Check out our web image classification demo! Expressive architecture encourages application and innovation. Models and optimization are defined by configuration without hard-coding. Switch between CPU and GPU by setting a single flag to train on a GPU machine then deploy to commodity clusters or mobile devices. Extensible code fosters active development. In Caffe’s first year, it has been forked by over 1,000 developers and had many significant changes contributed back. Thanks to these contributors the framework tracks the state-of-the-art in both code and models. Speed makes Caffe perfect for research experiments and industry deployment. Caffe can process over 60M images per day with a single NVIDIA K40 GPU.
  • 8
    OPAQUE

    OPAQUE

    OPAQUE Systems

    OPAQUE Systems offers a leading confidential AI platform that enables organizations to securely run AI, machine learning, and analytics workflows on sensitive data without compromising privacy or compliance. Their technology allows enterprises to unleash AI innovation risk-free by leveraging confidential computing and cryptographic verification, ensuring data sovereignty and regulatory adherence. OPAQUE integrates seamlessly into existing AI stacks via APIs, notebooks, and no-code solutions, eliminating the need for costly infrastructure changes. The platform provides verifiable audit trails and attestation for complete transparency and governance. Customers like Ant Financial have benefited by using previously inaccessible data to improve credit risk models. With OPAQUE, companies accelerate AI adoption while maintaining uncompromising security and control.
  • 9
    Amazon SageMaker Model Training
    Amazon SageMaker Model Training reduces the time and cost to train and tune machine learning (ML) models at scale without the need to manage infrastructure. You can take advantage of the highest-performing ML compute infrastructure currently available, and SageMaker can automatically scale infrastructure up or down, from one to thousands of GPUs. Since you pay only for what you use, you can manage your training costs more effectively. To train deep learning models faster, SageMaker distributed training libraries can automatically split large models and training datasets across AWS GPU instances, or you can use third-party libraries, such as DeepSpeed, Horovod, or Megatron. Efficiently manage system resources with a wide choice of GPUs and CPUs including P4d.24xl instances, which are the fastest training instances currently available in the cloud. Specify the location of data, indicate the type of SageMaker instances, and get started with a single click.
  • 10
    AWS Deep Learning AMIs
    AWS Deep Learning AMIs (DLAMI) provides ML practitioners and researchers with a curated and secure set of frameworks, dependencies, and tools to accelerate deep learning in the cloud. Built for Amazon Linux and Ubuntu, Amazon Machine Images (AMIs) come preconfigured with TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, allowing you to quickly deploy and run these frameworks and tools at scale. Develop advanced ML models at scale to develop autonomous vehicle (AV) technology safely by validating models with millions of supported virtual tests. Accelerate the installation and configuration of AWS instances, and speed up experimentation and evaluation with up-to-date frameworks and libraries, including Hugging Face Transformers. Use advanced analytics, ML, and deep learning capabilities to identify trends and make predictions from raw, disparate health data.
  • 11
    AWS Neuron

    AWS Neuron

    Amazon Web Services

    It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP).
  • 12
    3LC

    3LC

    3LC

    Light up the black box and pip install 3LC to gain the clarity you need to make meaningful changes to your models in moments. Remove the guesswork from your model training and iterate fast. Collect per-sample metrics and visualize them in your browser. Analyze your training and eliminate issues in your dataset. Model-guided, interactive data debugging and enhancements. Find important or inefficient samples. Understand what samples work and where your model struggles. Improve your model in different ways by weighting your data. Make sparse, non-destructive edits to individual samples or in a batch. Maintain a lineage of all changes and restore any previous revisions. Dive deeper than standard experiment trackers with per-sample per epoch metrics and data tracking. Aggregate metrics by sample features, rather than just epoch, to spot hidden trends. Tie each training run to a specific dataset revision for full reproducibility.
  • 13
    Amazon SageMaker Unified Studio
    Amazon SageMaker Unified Studio is a comprehensive, AI and data development environment designed to streamline workflows and simplify the process of building and deploying machine learning models. Built on Amazon DataZone, it integrates various AWS analytics and AI/ML services, such as Amazon EMR, AWS Glue, and Amazon Bedrock, into a single platform. Users can discover, access, and process data from various sources like Amazon S3 and Redshift, and develop generative AI applications. With tools for model development, governance, MLOps, and AI customization, SageMaker Unified Studio provides an efficient, secure, and collaborative environment for data teams.
  • 14
    Centific

    Centific

    Centific

    Centific’s frontier AI data foundry platform, powered by NVIDIA edge computing, is purpose-built to accelerate AI deployments by increasing flexibility, security, and scalability through comprehensive workflow orchestration. It centralizes AI project management in a unified AI Workbench, overseeing pipelines, model training, deployment, and reporting within a single, streamlined environment, while it handles data ingestion, preprocessing, and transformation. RAG Studio simplifies retrieval-augmented generation workflows, the Product Catalog organizes reusable assets, and Safe AI Studio embeds built-in safeguards to ensure compliance, reduce hallucinations, and protect sensitive data. Its plugin-based modular architecture supports both PaaS and SaaS models with metering to monitor consumption, and a centralized model catalog offers version control, compliance checks, and flexible deployment options.
  • 15
    Chainer

    Chainer

    Chainer

    A powerful, flexible, and intuitive framework for neural networks. Chainer supports CUDA computation. It only requires a few lines of code to leverage a GPU. It also runs on multiple GPUs with little effort. Chainer supports various network architectures including feed-forward nets, convnets, recurrent nets and recursive nets. It also supports per-batch architectures. Forward computation can include any control flow statements of Python without lacking the ability of backpropagation. It makes code intuitive and easy to debug. Comes with ChainerRLA, a library that implements various state-of-the-art deep reinforcement algorithms. Also, with ChainerCVA, a collection of tools to train and run neural networks for computer vision tasks. Chainer supports CUDA computation. It only requires a few lines of code to leverage a GPU. It also runs on multiple GPUs with little effort.
  • 16
    CentML

    CentML

    CentML

    CentML accelerates Machine Learning workloads by optimizing models to utilize hardware accelerators, like GPUs or TPUs, more efficiently and without affecting model accuracy. Our technology boosts training and inference speed, lowers compute costs, increases your AI-powered product margins, and boosts your engineering team's productivity. Software is no better than the team who built it. Our team is stacked with world-class machine learning and system researchers and engineers. Focus on your AI products and let our technology take care of optimum performance and lower cost for you.
  • Previous
  • You're on page 1
  • Next