Orthogonal method for the Identification of Volterra series. It is an extension of Lee-Schetzen method with two major improvments:

1. Reduced identification uncertainty in diagonal kernel points.

2. Possibility to identify each Volterra kernel with an input with different variance.
This feature reduces the identification noise on lower order kernels and improve the "resolution" on higher order kernels.

For reference see:

Simone Orcioni. Improving the approximation ability of Volterra series identified with a cross-correlation method. DOI:10.1007/s11071-014-1631-7. pp.2861-2869. In NONLINEAR DYNAMICS - ISSN:0924-090X vol. 78 (4) 2014.

Project Activity

See All Activity >

Categories

System, Simulation

License

GNU General Public License version 3.0 (GPLv3)

Follow Volterra2.0

Volterra2.0 Web Site

Other Useful Business Software
Keep company data safe with Chrome Enterprise Icon
Keep company data safe with Chrome Enterprise

Protect your business with AI policies and data loss prevention in the browser

Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
Download Chrome
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Volterra2.0!

Additional Project Details

Intended Audience

Engineering, Science/Research

User Interface

Command-line

Programming Language

MATLAB

Related Categories

MATLAB System Software, MATLAB Simulation Software

Registered

2014-06-03