Orthogonal method for the Identification of Volterra series. It is an extension of Lee-Schetzen method with two major improvments:

1. Reduced identification uncertainty in diagonal kernel points.

2. Possibility to identify each Volterra kernel with an input with different variance.
This feature reduces the identification noise on lower order kernels and improve the "resolution" on higher order kernels.

For reference see:

Simone Orcioni. Improving the approximation ability of Volterra series identified with a cross-correlation method. DOI:10.1007/s11071-014-1631-7. pp.2861-2869. In NONLINEAR DYNAMICS - ISSN:0924-090X vol. 78 (4) 2014.

Project Activity

See All Activity >

Categories

System, Simulation

License

GNU General Public License version 3.0 (GPLv3)

Follow Volterra2.0

Volterra2.0 Web Site

Other Useful Business Software
Gen AI apps are built with MongoDB Atlas Icon
Gen AI apps are built with MongoDB Atlas

The database for AI-powered applications.

MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
Start Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Volterra2.0!

Additional Project Details

Intended Audience

Engineering, Science/Research

User Interface

Command-line

Programming Language

MATLAB

Related Categories

MATLAB System Software, MATLAB Simulation Software

Registered

2014-06-03