ViennaCL provides high level C++ interfaces for linear algebra routines on CPUs and GPUs using CUDA, OpenCL, and OpenMP. The focus is on generic implementations of iterative solvers often used for large linear systems and simple integration into existing projects.
Features
- Three computing backends: CUDA, OpenCL, OpenMP
- Iterative Solvers: Conjugate Gradient, Stabilized BiConjugate Gradient, Generalized Minimum Residual
- Preconditioners: ICHOL, ILUT, ILU0, Block-ILU, AMG, (F)SPAI, Jacobi
- BLAS Level 1, Level 2 and Level 3 routines on GPUs and multi-core CPUs
- Fast sparse matrix-vector and sparse matrix-matrix products
- Convenient C++ wrappers for common linear algebra operations
- Fast Fourier transform
- C++ Interface is mostly uBLAS compatible
- Interfaces for uBLAS, Armadillo, Eigen and MTL 4
- Iterative Solvers can directly be used with uBLAS, Armadillo, Eigen and MTL4 objects
- Structured matrices: Circulant, Hankel, Toeplitz, Vandermonde
- OpenCL Kernel optimization environment for optimal performance on the target device
- Header-only library
- MATLAB interface for the iterative solvers (separate download)
- Python interface (PyViennaCL)
License
MIT LicenseFollow ViennaCL
nel_h2
Gen AI apps are built with MongoDB Atlas
MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
Rate This Project
Login To Rate This Project
User Reviews
-
Great project and team.