This study presents an integrated software application that enables vibration-based structural health monitoring within a closed-loop Product Lifecycle Management (PLM) framework. The system collects time-domain vibration data from UAV components during the pre-flight phase and applies deep learning architectures—including Gated Recurrent Units (GRUs), Long Short-Term Memory networks (LSTMs), and Convolutional Neural Networks (CNNs)—for accurate fault classification. Communication with the UAV is handled through the DroneKit-Python API, while RESTful APIs interface with the Aras Innovator PLM platform to automate data exchange and support predictive maintenance. Upon detecting anomalies, the application triggers safety protocols, such as UAV disarming and automatic maintenance request generation.
UAVs Predictive Maintenance
Vibration-Based Structural Health Monitoring of UAVs
Brought to you by:
omeryaman86
Downloads:
1 This Week