This study presents an integrated software application that enables vibration-based structural health monitoring within a closed-loop Product Lifecycle Management (PLM) framework. The system collects time-domain vibration data from UAV components during the pre-flight phase and applies deep learning architectures—including Gated Recurrent Units (GRUs), Long Short-Term Memory networks (LSTMs), and Convolutional Neural Networks (CNNs)—for accurate fault classification. Communication with the UAV is handled through the DroneKit-Python API, while RESTful APIs interface with the Aras Innovator PLM platform to automate data exchange and support predictive maintenance. Upon detecting anomalies, the application triggers safety protocols, such as UAV disarming and automatic maintenance request generation.

Project Activity

See All Activity >

Follow UAVs Predictive Maintenance

UAVs Predictive Maintenance Web Site

Other Useful Business Software
MongoDB Atlas runs apps anywhere Icon
MongoDB Atlas runs apps anywhere

Deploy in 115+ regions with the modern database for every enterprise.

MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
Start Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of UAVs Predictive Maintenance!

Additional Project Details

Registered

2025-03-25