Synthetic Data Kit is a CLI-centric toolkit for generating high-quality synthetic datasets to fine-tune Llama models, with an emphasis on producing reasoning traces and QA pairs that line up with modern instruction-tuning formats. It ships an opinionated, modular workflow that covers ingesting heterogeneous sources (documents, transcripts), prompting models to create labeled examples, and exporting to fine-tuning schemas with minimal glue code. The kit’s design goal is to shorten the “data prep” bottleneck by turning dataset creation into a repeatable pipeline rather than ad-hoc notebooks. It supports generation of rationales/chain-of-thought variants, configurable sampling, and guardrails so outputs meet format constraints and quality checks. Examples and guides show how to target task-specific behaviors like tool use or step-by-step reasoning, then save directly into training-ready files.
Features
- Four-stage CLI pipeline from ingest to export
- Generation of QA pairs and reasoning traces
- Configurable prompting, sampling, and filters
- Training-ready output formats for fine-tuning
- Quality checks and schema validation
- Examples targeting task-specific reasoning