Download Latest Version Gender_prediction_bechmark.zip (5.5 MB)
Email in envelope

Get an email when there's a new version of SelfNLP

Home
Name Modified Size InfoDownloads / Week
7f7410a9aabd4c95042bb219452851f3db3d06 2019-07-24 389 Bytes
e15e1f046966aaaa72028aaaeec515e39bb5f0 2019-07-24 319 Bytes
6093b65d3263939ccc6dcbde8c729fd23b9244 2019-07-24 441 Bytes
9c0c94dc7f3cf03c29cf07aa92a06b1dee32e2 2019-07-24 2.3 kB
e0770424b2a19faf507a501ebfc23be8f54e7b 2019-07-24 76 Bytes
e990c5863c42546811875568f84143a3cfb9b5 2019-07-24 411 Bytes
b51ff844440de2688a9b07711c6cb9990e0c6d 2019-07-24 434 Bytes
9509c88bed7080d496fc5e1d87a9315e30549d 2019-07-24 59 Bytes
preprocess_VOC.cpython-36.pyc 2019-07-24 12.8 kB
update.sample 2019-07-24 3.6 kB
pre-rebase.sample 2019-07-24 4.9 kB
commit-msg.sample 2019-07-24 896 Bytes
HEAD 2019-07-24 214 Bytes
Example1.xlsx 2019-07-24 63.1 kB
exclude 2019-07-24 240 Bytes
hample.xlsx 2019-07-24 7.8 kB
sample.xlsx 2019-07-24 7.8 kB
example.xlsx 2019-07-24 71.1 kB
Emotions.xlsx 2019-07-24 6.4 MB
upload.html 2019-07-24 521 Bytes
home.html 2019-07-24 766 Bytes
layout.html 2019-07-24 750 Bytes
index.html 2019-07-24 955 Bytes
profile.html 2019-07-24 538 Bytes
style.css 2019-07-24 3.5 kB
config.cpython-36.pyc 2019-07-24 460 Bytes
config.cpython-37.pyc 2019-07-24 464 Bytes
pre-applypatch.sample 2019-07-24 424 Bytes
pre-push.sample 2019-07-24 1.3 kB
post-update.sample 2019-07-24 189 Bytes
prepare-commit-msg.sample 2019-07-24 1.5 kB
fsmonitor-watchman.sample 2019-07-24 3.3 kB
pre-receive.sample 2019-07-24 544 Bytes
applypatch-msg.sample 2019-07-24 478 Bytes
pre-commit.sample 2019-07-24 1.6 kB
plotly_VIZ_new-checkpoint.ipynb 2019-07-24 984.6 kB
Gender_classification-checkpoint.ipynb 2019-07-24 13.5 kB
Untitled1-checkpoint.ipynb 2019-07-24 72 Bytes
sequences.css 2019-07-24 702 Bytes
cool_form_1.html 2019-07-24 176 Bytes
cool_form.html 2019-07-24 1.3 kB
Solution.txt 2019-07-24 89 Bytes
DataSunburst.cpython-36.pyc 2019-07-24 669 Bytes
Gender_classification.ipynb 2019-07-24 13.5 kB
Sentiment_prediction_noor.cpython-36.pyc 2019-07-24 813 Bytes
app.cpython-36.pyc 2019-07-24 353 Bytes
plotly_wordcloud.cpython-37.pyc 2019-07-24 1.4 kB
sunburst.cpython-36.pyc 2019-07-24 631 Bytes
Standardizer.cpython-36.pyc 2019-07-24 566 Bytes
contractions.py 2019-07-24 3.1 kB
sentiment_model.sav 2019-07-24 353.9 kB
tfidf.sav 2019-07-24 2.8 MB
Standardizer.py 2019-07-24 493 Bytes
big.txt 2019-07-24 6.5 MB
frequency_dictionary_en_82_765.txt 2019-07-24 1.3 MB
dcgan_mnist.gif 2019-07-24 5.8 MB
words-by-frequency.txt 2019-07-24 1.2 MB
FETCH_HEAD 2019-07-24 98 Bytes
packed-refs 2019-07-24 114 Bytes
index 2019-07-24 1.5 kB
description 2019-07-24 73 Bytes
config 2019-07-24 327 Bytes
1. Vanilla GAN PyTorch-checkpoint.ipynb 2019-07-24 29.0 kB
vanilla_mnist_pt_raw.png 2019-07-24 36.8 kB
dcgan_cifar_pt.png 2019-07-24 174.5 kB
vanilla_mnist_pt.png 2019-07-24 16.5 kB
dcgan_cifar.gif 2019-07-24 12.0 MB
dcgan_cifar_pt_raw.png 2019-07-24 251.2 kB
test.csv 2019-07-24 38.2 MB
utils.cpython-36.pyc 2019-07-24 4.0 kB
helpers.py 2019-07-24 172 Bytes
main.py 2019-07-24 6.5 kB
Untitled.ipynb 2019-07-24 907 Bytes
config.py 2019-07-24 437 Bytes
COMMIT_EDITMSG 2019-07-24 96 Bytes
backup_script 2019-07-24 334 Bytes
DataSunburst.py 2019-07-24 737 Bytes
Feelings_file.xlsx 2019-07-24 108.5 kB
plotly_wordcloud.py 2019-07-24 1.7 kB
requirement.txt 2019-07-24 3.3 kB
sunburst.csv 2019-07-24 20.3 kB
plotly_VIZ_new.ipynb 2019-07-24 158.5 kB
dash_link.py 2019-07-24 640 Bytes
Noun_adj_file.xlsx 2019-07-24 115.3 kB
test_2.csv 2019-07-24 38.2 MB
Actions_file.xlsx 2019-07-24 136.2 kB
plotly-latest.min.js 2019-07-24 3.1 MB
dash_link 2019-07-24 640 Bytes
Gender_prediction_bechmark.zip 2019-07-24 5.5 MB
Features_file.xlsx 2019-07-24 110.2 kB
Untitled1.ipynb 2019-07-24 10.8 kB
utils.py 2019-07-24 5.0 kB
2. DC-GAN TensorFlow.ipynb 2019-07-24 352.0 kB
README.md 2019-07-24 2.2 kB
1. Vanilla GAN PyTorch.ipynb 2019-07-24 29.3 kB
2. DC-GAN PyTorch-MNIST.ipynb 2019-07-24 225.4 kB
reprocess.xlsx 2019-07-24 1.7 MB
login_customize.html 2019-07-24 2.2 kB
login.html 2019-07-24 781 Bytes
Totals: 99 Items   126.1 MB 1

gans: Generative Adversarial Networks

Multiple Generative Adversarial Networks (GANs) implemented in PyTorch and Tensorflow.

Check out this blog post for an introduction to Generative Networks.

Vanilla GANs

Vanilla GANs found in this project were developed based on the original paper Generative Adversarial Networks by Goodfellow et al.

These are trained on the MNIST dataset, and learn to create hand-written digit images using a 1-Dimensional vector representation for 2D input images. - PyTorch Notebook - TensorFlow Notebook

MNIST-like generated images before & after training.

DCGANs

Deep Convolutional Generative Adversarial Networks (DCGANs) in this repository were developed based on the original paper Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks by Radford et al.

These are trained on the CIFAR10 and the MNIST datasets. They use 3 dimensional representations for images (length x height x colors) directly for training.

CIFAR-like generated images before & after training.

Source: README.md, updated 2019-07-24