roberta-base is a robustly optimized variant of BERT, pretrained on a significantly larger corpus of English text using dynamic masked language modeling. Developed by Facebook AI, RoBERTa improves on BERT by removing the Next Sentence Prediction objective, using longer training, larger batches, and more data, including BookCorpus, English Wikipedia, CC-News, OpenWebText, and Stories. It captures contextual representations of language by masking 15% of input tokens and predicting them. RoBERTa is designed to be fine-tuned for a wide range of NLP tasks such as classification, QA, and sequence labeling, achieving strong performance on the GLUE benchmark and other downstream applications.
Features
- Pretrained on 160GB of English text from diverse sources
- Uses dynamic token masking during training
- No Next Sentence Prediction objective
- 125M parameters with 12 transformer layers
- Supports sequence and token-level tasks (e.g., classification, QA)
- Byte-Pair Encoding (BPE) tokenizer with 50K vocabulary
- Available in PyTorch, TensorFlow, and JAX
- Fine-tuned versions available for various NLP benchmarks
Categories
AI ModelsFollow roberta-base
Other Useful Business Software
MongoDB Atlas runs apps anywhere
MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
Rate This Project
Login To Rate This Project
User Reviews
Be the first to post a review of roberta-base!