Red(uced)-RF, a new type of Random Forests that adopts dynamic data reduction and weighted upvoting techniques. Red-RF is favorably applicable to big data: it demonstrates an accurate and efficient performance while achieving a considerable data reduction w.r.t. dataset size.

Manuscripts available on IEEE Xplore:

H. Mohsen, H. Kurban, K. Zimmer, M. Jenne and M. Dalkilic. Red-RF: Reduced Random Forests using priority voting & dynamic data reduction. In IEEE BigData Congress'2015.

H. Mohsen, H. Kurban, M. Jenne and M. Dalkilic (2014). A New Set of Random Forests with Varying Dynamic Data Reduction and Voting Techniques. In IEEE DSAA'2014.

Code, README file, and a sample input file are available in Files/ directory above.

For inquiries, please contact us at hmohsen@imail,iu.edu (or @indiana.edu).

Features

  • Data Reduction
  • Classification
  • Random Forests
  • Weighted Voting
  • Machine Learning
  • Data Mining
  • Big Data

Project Samples

Project Activity

See All Activity >

Categories

Big Data

Follow Red-RF

Red-RF Web Site

Other Useful Business Software
Gen AI apps are built with MongoDB Atlas Icon
Gen AI apps are built with MongoDB Atlas

Build gen AI apps with an all-in-one modern database: MongoDB Atlas

MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
Start Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Red-RF!

Additional Project Details

Registered

2015-05-01