RLM (short for Reinforcement Learning Models) is a modular framework that makes it easier to build, train, evaluate, and deploy reinforcement learning (RL) agents across a wide range of environments and tasks. It provides a consistent API that abstracts away many of the repetitive engineering patterns in RL research and application work, letting developers focus on modeling, experimentation, and fine-tuning rather than infrastructure plumbing. Within the framework, you can define custom agents, environments, policy networks, and reward structures while leveraging built-in dataset utilities, logging, and checkpointing for reproducible experiments. RLM also includes integration with popular simulation environments and benchmark suites, giving researchers a ready-made playground for algorithm comparison and performance tracking.

Features

  • Unified API for defining and running reinforcement learning agents
  • Modular components for composable pipelines
  • Integrations with benchmark environments and simulators
  • Support for distributed and multi-GPU training
  • Built-in logging, checkpointing, and evaluation tools
  • Configurable reward, policy, and replay buffer abstractions

Project Samples

Project Activity

See All Activity >

Categories

Libraries

License

MIT License

Follow Recursive Language Models

Recursive Language Models Web Site

Other Useful Business Software
Atera all-in-one platform IT management software with AI agents Icon
Atera all-in-one platform IT management software with AI agents

Ideal for internal IT departments or managed service providers (MSPs)

Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
Learn More
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Recursive Language Models!

Additional Project Details

Programming Language

Python

Related Categories

Python Libraries

Registered

14 hours ago