Qwen3-TTS is an open-source text-to-speech (TTS) project built around the Qwen3 large language model family, focused on generating high-quality, natural-sounding speech from plain text input. It provides researchers and developers with tools to transform text into expressive, intelligible audio, supporting multiple languages and voice characteristics tuned for clarity and fluidity. The project includes pre-trained models and inference scripts that let users synthesize speech locally or integrate TTS into larger pipelines such as voice assistants, accessibility tools, or multimedia generation workflows. Because it’s part of the broader Qwen ecosystem, it benefits from the model’s understanding of linguistic nuances, enabling more accurate pronunciation, prosody, and contextual delivery than many traditional TTS systems. Developers can customize voice output parameters like speed, pitch, and volume, and combine the TTS stack with other AI components.
Features
- High-quality natural-sounding speech synthesis
- Support for multiple languages and voice styles
- Pre-trained models ready for inference
- Adjustable voice parameters (speed, pitch, volume)
- Integration hooks for interactive applications
- Designed for real-time or near-real-time performance