This strategy of binary classification to identify catastrophic outliers is presented in “Machine Learning Classification to Identify Catastrophic Outlier Photometric Redshift Estimates.” J. Singal, G. Silverman, E. Jones, T. Do, B. Boscoe, and Y. Wan, 2022, Astrophysical Journal, 928, 6

This package contains Jupyter notebooks and supporting files which do the following:

- Perform a neural network regression to estimate photo-zs
(photoz_regression_mlp.ipynb)

- Take a data set with estimated photo-zs, set aside 30% of the galaxies as a base evaluation set, and output training sets for a binary classifier with varying portions of catastrophic outliers using the remaining 70% of the galaxies
(process_data_for_binary_classifier.ipynb)

- Perform a neural network binary classification to determine catastrophic outliers given a data set with photometry and estimated photo-zs
(catastrophic_outlier_binary_classification.ipynb)

Supporting files:
galaxy_utils.py
models.py

Project Activity

See All Activity >

Follow photo-z CO binary classifier

photo-z CO binary classifier Web Site

Other Useful Business Software
Gen AI apps are built with MongoDB Atlas Icon
Gen AI apps are built with MongoDB Atlas

The database for AI-powered applications.

MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
Start Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of photo-z CO binary classifier!

Additional Project Details

Registered

2022-01-15