Name | Modified | Size | Downloads / Week |
---|---|---|---|
Parent folder | |||
pygad-3.5.0.tar.gz | 2025-07-09 | 109.8 kB | |
pygad-3.5.0-py3-none-any.whl | 2025-07-09 | 89.6 kB | |
PyGAD-3.5.0 source code.tar.gz | 2025-07-09 | 19.8 MB | |
PyGAD-3.5.0 source code.zip | 2025-07-09 | 21.3 MB | |
README.md | 2025-07-09 | 6.3 kB | |
Totals: 5 Items | 41.3 MB | 1 |
- Fix a bug when minus sign (-) is used inside the
stop_criteria
parameter for multi-objective problems. https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/314 https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/323 - Fix a bug when the
stop_criteria
parameter is passed as an iterable (e.g. list) for multi-objective problems (e.g.['reach_50_60', 'reach_20, 40']
). https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/314 - Call the
get_matplotlib()
function from theplot_genes()
method inside thepygad.visualize.plot.Plot
class to import the matplotlib library. https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/315 - Create a new helper method called
select_unique_value()
inside thepygad/helper/unique.py
script to select a unique gene from an array of values. - Create a new helper method called
get_random_mutation_range()
inside thepygad/utils/mutation.py
script that returns the random mutation range (min and max) for a single gene by its index. - Create a new helper method called
change_random_mutation_value_dtype
inside thepygad/utils/mutation.py
script that changes the data type of the value used to apply random mutation. - Create a new helper method called
round_random_mutation_value()
inside thepygad/utils/mutation.py
script that rounds the value used to apply random mutation. - Create the
pygad/helper/misc.py
script with a class calledHelper
that has the following helper methods: change_population_dtype_and_round()
: For each gene in the population, round the gene value and change the data type.change_gene_dtype_and_round()
: Round the change the data type of a single gene.mutation_change_gene_dtype_and_round()
: Decides whether mutation is done by replacement or not. Then it rounds and change the data type of the new gene value.validate_gene_constraint_callable_output()
: Validates the output of the user-defined callable/function that checks whether the gene constraint defined in thegene_constraint
parameter is satisfied or not.get_gene_dtype()
: Returns the gene data type from thegene_type
instance attribute.get_random_mutation_range()
: Returns the random mutation range using therandom_mutation_min_val
andrandom_mutation_min_val
instance attributes.get_initial_population_range()
: Returns the initial population values range using theinit_range_low
andinit_range_high
instance attributes.generate_gene_value_from_space()
: Generates/selects a value for a gene using thegene_space
instance attribute.generate_gene_value_randomly()
: Generates a random value for the gene. Only used ifgene_space
isNone
.generate_gene_value()
: Generates a value for the gene. It checks whethergene_space
isNone
and calls eithergenerate_gene_value_randomly()
orgenerate_gene_value_from_space()
.filter_gene_values_by_constraint()
: Receives a list of values for a gene. Then it filters such values using the gene constraint.get_valid_gene_constraint_values()
: Selects one valid gene value that satisfy the gene constraint. It simply callsgenerate_gene_value()
to generate some gene values then it filters such values usingfilter_gene_values_by_constraint()
.- Create a new helper method called
mutation_process_random_value()
inside thepygad/utils/mutation.py
script that generates constrained random values for mutation. It calls eithergenerate_gene_value()
orget_valid_gene_constraint_values()
based on whether thegene_constraint
parameter is used or not. - A new parameter called
gene_constraint
is added. It accepts a list of callables (i.e. functions) acting as constraints for the gene values. Before selecting a value for a gene, the callable is called to ensure the candidate value is valid. Check the [Gene Constraint](https://pygad.readthedocs.io/en/latest/pygad_more.html#gene-constraint) section for more information. https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/119 - A new parameter called
sample_size
is added. To select a gene value that respects a constraint, this variable defines the size of the sample from which a value is selected randomly. Useful if eitherallow_duplicate_genes
orgene_constraint
is used. An instance attribute of the same name is created in the instances of thepygad.GA
class. Check the [sample_size Parameter](https://pygad.readthedocs.io/en/latest/pygad_more.html#sample-size-parameter) section for more information. - Use the
sample_size
parameter instead ofnum_trials
in the methodssolve_duplicate_genes_randomly()
andunique_float_gene_from_range()
inside thepygad/helper/unique.py
script. It is the maximum number of values to generate as the search space when looking for a unique float value out of a range. - Fixed a bug in population initialization when
allow_duplicate_genes=False
. Previously, gene values were checked for duplicates before rounding, which could allow near-duplicates like 7.61 and 7.62 to pass. After rounding (e.g., both becoming 7.6), this resulted in unintended duplicates. The fix ensures gene values are now rounded before duplicate checks, preventing such cases. - More tests are created.
- More examples are created.
- Edited the
sort_solutions_nsga2()
method in thepygad/utils/nsga2.py
script to accept an optional parameter calledfind_best_solution
when calling this method just to find the best solution. - Fixed a bug while applying the non-dominated sorting in the
get_non_dominated_set()
method inside thepygad/utils/nsga2.py
script. It was swapping the non-dominated and dominated sets. In other words, it used the non-dominated set as if it is the dominated set and vice versa. All the calls to this method were edited accordingly. https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/320. - Fix a bug retrieving in the
best_solution()
method when retrieving the best solution for multi-objective problems. https://github.com/ahmedfgad/GeneticAlgorithmPython/pull/331